Vyřešte pro: x
x=\frac{x_{2}+6}{5}
Vyřešte pro: x_2
x_{2}=5x-6
Vyřešte pro: x (complex solution)
x=-\frac{2\pi n_{1}i}{5\ln(5)}+\frac{x_{2}}{5}+\frac{6}{5}
n_{1}\in \mathrm{Z}
Vyřešte pro: x_2 (complex solution)
x_{2}=\frac{2\pi n_{1}i}{\ln(5)}+5x-6
n_{1}\in \mathrm{Z}
Graf
Sdílet
Zkopírováno do schránky
5^{-5x+x_{2}+6}=1
Rovnici vyřešte použitím pravidel mocnitelů a logaritmů.
\log(5^{-5x+x_{2}+6})=\log(1)
Vypočítejte logaritmus obou stran rovnice.
\left(-5x+x_{2}+6\right)\log(5)=\log(1)
Logaritmus umocněného čísla je mocnitel vynásobený logaritmem daného čísla.
-5x+x_{2}+6=\frac{\log(1)}{\log(5)}
Vydělte obě strany hodnotou \log(5).
-5x+x_{2}+6=\log_{5}\left(1\right)
Použijte vzorec pro změnu základu logaritmu \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
-5x=-\left(x_{2}+6\right)
Odečtěte hodnotu x_{2}+6 od obou stran rovnice.
x=-\frac{x_{2}+6}{-5}
Vydělte obě strany hodnotou -5.
5^{x_{2}+6-5x}=1
Rovnici vyřešte použitím pravidel mocnitelů a logaritmů.
\log(5^{x_{2}+6-5x})=\log(1)
Vypočítejte logaritmus obou stran rovnice.
\left(x_{2}+6-5x\right)\log(5)=\log(1)
Logaritmus umocněného čísla je mocnitel vynásobený logaritmem daného čísla.
x_{2}+6-5x=\frac{\log(1)}{\log(5)}
Vydělte obě strany hodnotou \log(5).
x_{2}+6-5x=\log_{5}\left(1\right)
Použijte vzorec pro změnu základu logaritmu \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x_{2}=-\left(6-5x\right)
Odečtěte hodnotu -5x+6 od obou stran rovnice.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}