Přejít k hlavnímu obsahu
Vyřešte pro: x
Tick mark Image
Graf

Podobné úlohy z vyhledávání na webu

Sdílet

\left(x^{2}-6x+9\right)\left(10-17x\right)^{2}=0
Rozviňte výraz \left(x-3\right)^{2} podle binomické věty \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
\left(x^{2}-6x+9\right)\left(100-340x+289x^{2}\right)=0
Rozviňte výraz \left(10-17x\right)^{2} podle binomické věty \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
4741x^{2}-2074x^{3}+289x^{4}-3660x+900=0
S využitím distributivnosti vynásobte číslo x^{2}-6x+9 číslem 100-340x+289x^{2} a slučte stejné členy.
289x^{4}-2074x^{3}+4741x^{2}-3660x+900=0
Změňte uspořádání rovnice do standardního tvaru. Členy seřaďte od největší mocniny po nejmenší.
±\frac{900}{289},±\frac{900}{17},±900,±\frac{450}{289},±\frac{450}{17},±450,±\frac{300}{289},±\frac{300}{17},±300,±\frac{225}{289},±\frac{225}{17},±225,±\frac{180}{289},±\frac{180}{17},±180,±\frac{150}{289},±\frac{150}{17},±150,±\frac{100}{289},±\frac{100}{17},±100,±\frac{90}{289},±\frac{90}{17},±90,±\frac{75}{289},±\frac{75}{17},±75,±\frac{60}{289},±\frac{60}{17},±60,±\frac{50}{289},±\frac{50}{17},±50,±\frac{45}{289},±\frac{45}{17},±45,±\frac{36}{289},±\frac{36}{17},±36,±\frac{30}{289},±\frac{30}{17},±30,±\frac{25}{289},±\frac{25}{17},±25,±\frac{20}{289},±\frac{20}{17},±20,±\frac{18}{289},±\frac{18}{17},±18,±\frac{15}{289},±\frac{15}{17},±15,±\frac{12}{289},±\frac{12}{17},±12,±\frac{10}{289},±\frac{10}{17},±10,±\frac{9}{289},±\frac{9}{17},±9,±\frac{6}{289},±\frac{6}{17},±6,±\frac{5}{289},±\frac{5}{17},±5,±\frac{4}{289},±\frac{4}{17},±4,±\frac{3}{289},±\frac{3}{17},±3,±\frac{2}{289},±\frac{2}{17},±2,±\frac{1}{289},±\frac{1}{17},±1
Podle věty o racionálních kořenech jsou všechny racionální kořeny polynomu ve tvaru \frac{p}{q}, kde p je dělitelem konstantního členu 900 a q je dělitelem vedoucího koeficientu 289. Uveďte všechny kandidáty \frac{p}{q}
x=3
Najděte jeden takový kořen tak, že vyzkoušíte všechny celočíselné hodnoty od nejmenší hodnoty po absolutní hodnotu. Pokud žádné celočíselné kořeny nenajdete, vyzkoušejte zlomky.
289x^{3}-1207x^{2}+1120x-300=0
Podle faktoru binomická x-k je součinitel polynomu pro každý kořenový k. Vydělte číslo 289x^{4}-2074x^{3}+4741x^{2}-3660x+900 číslem x-3 a dostanete 289x^{3}-1207x^{2}+1120x-300. Umožňuje vyřešit rovnici, ve které se výsledek rovná 0.
±\frac{300}{289},±\frac{300}{17},±300,±\frac{150}{289},±\frac{150}{17},±150,±\frac{100}{289},±\frac{100}{17},±100,±\frac{75}{289},±\frac{75}{17},±75,±\frac{60}{289},±\frac{60}{17},±60,±\frac{50}{289},±\frac{50}{17},±50,±\frac{30}{289},±\frac{30}{17},±30,±\frac{25}{289},±\frac{25}{17},±25,±\frac{20}{289},±\frac{20}{17},±20,±\frac{15}{289},±\frac{15}{17},±15,±\frac{12}{289},±\frac{12}{17},±12,±\frac{10}{289},±\frac{10}{17},±10,±\frac{6}{289},±\frac{6}{17},±6,±\frac{5}{289},±\frac{5}{17},±5,±\frac{4}{289},±\frac{4}{17},±4,±\frac{3}{289},±\frac{3}{17},±3,±\frac{2}{289},±\frac{2}{17},±2,±\frac{1}{289},±\frac{1}{17},±1
Podle věty o racionálních kořenech jsou všechny racionální kořeny polynomu ve tvaru \frac{p}{q}, kde p je dělitelem konstantního členu -300 a q je dělitelem vedoucího koeficientu 289. Uveďte všechny kandidáty \frac{p}{q}
x=3
Najděte jeden takový kořen tak, že vyzkoušíte všechny celočíselné hodnoty od nejmenší hodnoty po absolutní hodnotu. Pokud žádné celočíselné kořeny nenajdete, vyzkoušejte zlomky.
289x^{2}-340x+100=0
Podle faktoru binomická x-k je součinitel polynomu pro každý kořenový k. Vydělte číslo 289x^{3}-1207x^{2}+1120x-300 číslem x-3 a dostanete 289x^{2}-340x+100. Umožňuje vyřešit rovnici, ve které se výsledek rovná 0.
x=\frac{-\left(-340\right)±\sqrt{\left(-340\right)^{2}-4\times 289\times 100}}{2\times 289}
Všechny rovnice typu ax^{2}+bx+c=0 je možné vyřešit pomocí vzorce kvadratické rovnice: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. V uvedeném vzorci nahraďte a hodnotou 289, b hodnotou -340 a c hodnotou 100.
x=\frac{340±0}{578}
Proveďte výpočty.
x=\frac{10}{17}
Řešení jsou stejná.
x=3 x=\frac{10}{17}
Uveďte všechna zjištěná řešení.