Vyřešte pro: w (complex solution)
\left\{\begin{matrix}w=\frac{-2x^{2}+\sqrt{y}+\sqrt[4]{x}}{y}\text{, }&y\neq 0\\w\in \mathrm{C}\text{, }&\left(x=\frac{2^{\frac{3}{7}}e^{\frac{8\pi i}{7}}}{2}\text{ or }x=0\text{ or }x=\frac{2^{\frac{3}{7}}}{2}\right)\text{ and }y=0\end{matrix}\right,
Vyřešte pro: w
\left\{\begin{matrix}w=\frac{-2x^{2}+\sqrt{y}+\sqrt[4]{x}}{y}\text{, }&x\geq 0\text{ and }y>0\\w\in \mathrm{R}\text{, }&\left(x=0\text{ or }x=\frac{2^{\frac{3}{7}}}{2}\right)\text{ and }y=0\end{matrix}\right,
Sdílet
Zkopírováno do schránky
\sqrt[4]{x}+\sqrt{y}=2x^{2}+wy
Vynásobením x a x získáte x^{2}.
2x^{2}+wy=\sqrt[4]{x}+\sqrt{y}
Přehoďte strany rovnice tak, aby všechny proměnné byly na její levé straně.
wy=\sqrt[4]{x}+\sqrt{y}-2x^{2}
Odečtěte 2x^{2} od obou stran.
yw=-2x^{2}+\sqrt{y}+\sqrt[4]{x}
Rovnice je ve standardním tvaru.
\frac{yw}{y}=\frac{-2x^{2}+\sqrt{y}+\sqrt[4]{x}}{y}
Vydělte obě strany hodnotou y.
w=\frac{-2x^{2}+\sqrt{y}+\sqrt[4]{x}}{y}
Dělení číslem y ruší násobení číslem y.
\sqrt[4]{x}+\sqrt{y}=2x^{2}+wy
Vynásobením x a x získáte x^{2}.
2x^{2}+wy=\sqrt[4]{x}+\sqrt{y}
Přehoďte strany rovnice tak, aby všechny proměnné byly na její levé straně.
wy=\sqrt[4]{x}+\sqrt{y}-2x^{2}
Odečtěte 2x^{2} od obou stran.
yw=-2x^{2}+\sqrt{y}+\sqrt[4]{x}
Rovnice je ve standardním tvaru.
\frac{yw}{y}=\frac{-2x^{2}+\sqrt{y}+\sqrt[4]{x}}{y}
Vydělte obě strany hodnotou y.
w=\frac{-2x^{2}+\sqrt{y}+\sqrt[4]{x}}{y}
Dělení číslem y ruší násobení číslem y.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}