Vyhodnotit
\frac{\sqrt{6594}}{70}\approx 1,16004926
Sdílet
Zkopírováno do schránky
\sqrt{\frac{3}{5}-\frac{36}{21}+\frac{123}{50}}
Vykraťte zlomek \frac{15}{25} na základní tvar vytknutím a vykrácením hodnoty 5.
\sqrt{\frac{3}{5}-\frac{12}{7}+\frac{123}{50}}
Vykraťte zlomek \frac{36}{21} na základní tvar vytknutím a vykrácením hodnoty 3.
\sqrt{\frac{21}{35}-\frac{60}{35}+\frac{123}{50}}
Nejmenší společný násobek čísel 5 a 7 je 35. Převeďte \frac{3}{5} a \frac{12}{7} na zlomky se jmenovatelem 35.
\sqrt{\frac{21-60}{35}+\frac{123}{50}}
Vzhledem k tomu, že \frac{21}{35} a \frac{60}{35} mají stejného jmenovatele, můžete je odečíst odečtením jejich čitatelů.
\sqrt{-\frac{39}{35}+\frac{123}{50}}
Odečtěte 60 od 21 a dostanete -39.
\sqrt{-\frac{390}{350}+\frac{861}{350}}
Nejmenší společný násobek čísel 35 a 50 je 350. Převeďte -\frac{39}{35} a \frac{123}{50} na zlomky se jmenovatelem 350.
\sqrt{\frac{-390+861}{350}}
Vzhledem k tomu, že -\frac{390}{350} a \frac{861}{350} mají stejného jmenovatele, můžete je sečíst sečtením jejich čitatelů.
\sqrt{\frac{471}{350}}
Sečtením -390 a 861 získáte 471.
\frac{\sqrt{471}}{\sqrt{350}}
Odpište druhou odmocninu divize \sqrt{\frac{471}{350}} jako divizi čtvercových kořenových složek \frac{\sqrt{471}}{\sqrt{350}}.
\frac{\sqrt{471}}{5\sqrt{14}}
Rozložte 350=5^{2}\times 14 na součin. Odpište druhou odmocninu produktu \sqrt{5^{2}\times 14} jako součin čtvercových kořenových složek \sqrt{5^{2}}\sqrt{14}. Vypočítejte druhou odmocninu čísla 5^{2}.
\frac{\sqrt{471}\sqrt{14}}{5\left(\sqrt{14}\right)^{2}}
Převeďte jmenovatele \frac{\sqrt{471}}{5\sqrt{14}} vynásobením čitatele a jmenovatele \sqrt{14}.
\frac{\sqrt{471}\sqrt{14}}{5\times 14}
Mocnina hodnoty \sqrt{14} je 14.
\frac{\sqrt{6594}}{5\times 14}
Chcete-li vynásobit \sqrt{471} a \sqrt{14}, vynásobte čísla v druhé odmocnině.
\frac{\sqrt{6594}}{70}
Vynásobením 5 a 14 získáte 70.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}