\lim \frac { 2 n } { n + 1 } = 2
Vyřešte pro: l
l=\frac{1}{Re(\frac{1}{n+1})Im(n)+Im(\frac{1}{n+1})Re(n)}
2Re(\frac{1}{n+1})Im(n)+2Im(\frac{1}{n+1})Re(n)\neq 0\text{ and }n\neq -1
Sdílet
Zkopírováno do schránky
\left(2Re(\frac{1}{n+1})Im(n)+2Im(\frac{1}{n+1})Re(n)\right)l=2
Rovnice je ve standardním tvaru.
\frac{\left(2Re(\frac{1}{n+1})Im(n)+2Im(\frac{1}{n+1})Re(n)\right)l}{2Re(\frac{1}{n+1})Im(n)+2Im(\frac{1}{n+1})Re(n)}=\frac{2}{2Re(\frac{1}{n+1})Im(n)+2Im(\frac{1}{n+1})Re(n)}
Vydělte obě strany hodnotou 2Re(n)Im(\left(n+1\right)^{-1})+2Im(n)Re(\left(n+1\right)^{-1}).
l=\frac{2}{2Re(\frac{1}{n+1})Im(n)+2Im(\frac{1}{n+1})Re(n)}
Dělení číslem 2Re(n)Im(\left(n+1\right)^{-1})+2Im(n)Re(\left(n+1\right)^{-1}) ruší násobení číslem 2Re(n)Im(\left(n+1\right)^{-1})+2Im(n)Re(\left(n+1\right)^{-1}).
l=\frac{1}{Re(\frac{1}{n+1})Im(n)+Im(\frac{1}{n+1})Re(n)}
Vydělte číslo 2 číslem 2Re(n)Im(\left(n+1\right)^{-1})+2Im(n)Re(\left(n+1\right)^{-1}).
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}