\left| \begin{array} { c c c } { 4 } & { 3 } & { - 1 } \\ { 5 } & { - 3 } & { 3 } \\ { - 5 } & { 1 } & { - 2 } \end{array} \right|
Vyhodnotit
7
Rozložit
7
Sdílet
Zkopírováno do schránky
det(\left(\begin{matrix}4&3&-1\\5&-3&3\\-5&1&-2\end{matrix}\right))
Najděte determinant matice pomocí metody diagonál.
\left(\begin{matrix}4&3&-1&4&3\\5&-3&3&5&-3\\-5&1&-2&-5&1\end{matrix}\right)
Původní matici rozšiřte tak, že první dva sloupce zopakujete jako čtvrtý a pátý sloupec.
4\left(-3\right)\left(-2\right)+3\times 3\left(-5\right)-5=-26
Začněte levou horní položkou, násobte dolů podél diagonál a sečtěte výsledné součiny.
-5\left(-3\right)\left(-1\right)+3\times 4-2\times 5\times 3=-33
Začněte levou dolní položkou, násobte vzhůru podél diagonál a sečtěte výsledné součiny.
-26-\left(-33\right)
Odečtěte součet součinů hlavní diagonály od součtu součinů vedlejší diagonály.
7
Odečtěte číslo -33 od čísla -26.
det(\left(\begin{matrix}4&3&-1\\5&-3&3\\-5&1&-2\end{matrix}\right))
Najděte determinant matice metodou roznásobení minorů (označuje se také jako rozvoj podle algebraických doplňků).
4det(\left(\begin{matrix}-3&3\\1&-2\end{matrix}\right))-3det(\left(\begin{matrix}5&3\\-5&-2\end{matrix}\right))-det(\left(\begin{matrix}5&-3\\-5&1\end{matrix}\right))
Pokud chcete použít metodu rozvoje podle minorů, vynásobte každý prvek z prvního řádku jeho minorem, který je determinantou matice 2\times 2 vytvořené odstraněním řádku a sloupce, které obsahují tento prvek, a pak ho vynásobte znakem pozice prvku.
4\left(-3\left(-2\right)-3\right)-3\left(5\left(-2\right)-\left(-5\times 3\right)\right)-\left(5-\left(-5\left(-3\right)\right)\right)
Pro \left(\begin{matrix}a&b\\c&d\end{matrix}\right) matice 2\times 2 je determinant ad-bc.
4\times 3-3\times 5-\left(-10\right)
Proveďte zjednodušení.
7
Výsledek získáte sečtením členů.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}