Přejít k hlavnímu obsahu
Vyhodnotit
Tick mark Image

Podobné úlohy z vyhledávání na webu

Sdílet

\int _{122}^{328}\left(2-\left(x^{2}-4x+4\right)\right)^{2}-\left(2-0\times 5\right)^{2}\mathrm{d}x
Rozviňte výraz \left(x-2\right)^{2} podle binomické věty \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
\int _{122}^{328}\left(2-x^{2}+4x-4\right)^{2}-\left(2-0\times 5\right)^{2}\mathrm{d}x
Pokud chcete najít opačnou hodnotu k x^{2}-4x+4, najděte opačnou hodnotu k jednotlivým členům.
\int _{122}^{328}\left(-2-x^{2}+4x\right)^{2}-\left(2-0\times 5\right)^{2}\mathrm{d}x
Odečtěte 4 od 2 a dostanete -2.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-\left(2-0\times 5\right)^{2}\mathrm{d}x
Umocněte číslo -2-x^{2}+4x na druhou.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-\left(2-0\right)^{2}\mathrm{d}x
Vynásobením 0 a 5 získáte 0.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-2^{2}\mathrm{d}x
Odečtěte 0 od 2 a dostanete 2.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-4\mathrm{d}x
Výpočtem 2 na 2 získáte 4.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x\mathrm{d}x
Odečtěte 4 od 4 a dostanete 0.
\int x^{4}-8x^{3}+20x^{2}-16x\mathrm{d}x
Nejdříve vyhodnoťte neurčitý integrál.
\int x^{4}\mathrm{d}x+\int -8x^{3}\mathrm{d}x+\int 20x^{2}\mathrm{d}x+\int -16x\mathrm{d}x
Integrujte součet člen po členu.
\int x^{4}\mathrm{d}x-8\int x^{3}\mathrm{d}x+20\int x^{2}\mathrm{d}x-16\int x\mathrm{d}x
V každém členu vytkněte konstantu.
\frac{x^{5}}{5}-8\int x^{3}\mathrm{d}x+20\int x^{2}\mathrm{d}x-16\int x\mathrm{d}x
Vzhledem k tomu, že \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pro k\neq -1, nahraďte \int x^{4}\mathrm{d}x \frac{x^{5}}{5}.
\frac{x^{5}}{5}-2x^{4}+20\int x^{2}\mathrm{d}x-16\int x\mathrm{d}x
Vzhledem k tomu, že \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pro k\neq -1, nahraďte \int x^{3}\mathrm{d}x \frac{x^{4}}{4}. Vynásobte číslo -8 číslem \frac{x^{4}}{4}.
\frac{x^{5}}{5}-2x^{4}+\frac{20x^{3}}{3}-16\int x\mathrm{d}x
Vzhledem k tomu, že \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pro k\neq -1, nahraďte \int x^{2}\mathrm{d}x \frac{x^{3}}{3}. Vynásobte číslo 20 číslem \frac{x^{3}}{3}.
\frac{x^{5}}{5}-2x^{4}+\frac{20x^{3}}{3}-8x^{2}
Vzhledem k tomu, že \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pro k\neq -1, nahraďte \int x\mathrm{d}x \frac{x^{2}}{2}. Vynásobte číslo -16 číslem \frac{x^{2}}{2}.
\frac{328^{5}}{5}-2\times 328^{4}+\frac{20}{3}\times 328^{3}-8\times 328^{2}-\left(\frac{122^{5}}{5}-2\times 122^{4}+\frac{20}{3}\times 122^{3}-8\times 122^{2}\right)
Určitý integrál je primitivní funkcí výrazu vyhodnocené jako horní limita integrace minus primitivní funkce vyhodnocená jako spodní limita integrace.
\frac{10970799276608}{15}
Proveďte zjednodušení.