Přejít k hlavnímu obsahu
Vyhodnotit
Tick mark Image

Podobné úlohy z vyhledávání na webu

Sdílet

\int 2x+2-1-2x^{2}-2x^{2}+x\mathrm{d}x
Nejdříve vyhodnoťte neurčitý integrál.
\int 2x\mathrm{d}x+\int 2\mathrm{d}x+\int -1\mathrm{d}x+\int -2x^{2}\mathrm{d}x+\int -2x^{2}\mathrm{d}x+\int x\mathrm{d}x
Integrujte součet člen po členu.
2\int x\mathrm{d}x+\int 2\mathrm{d}x+\int -1\mathrm{d}x-2\int x^{2}\mathrm{d}x-2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
V každém členu vytkněte konstantu.
x^{2}+\int 2\mathrm{d}x+\int -1\mathrm{d}x-2\int x^{2}\mathrm{d}x-2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Vzhledem k tomu, že \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pro k\neq -1, nahraďte \int x\mathrm{d}x \frac{x^{2}}{2}. Vynásobte číslo 2 číslem \frac{x^{2}}{2}.
x^{2}+2x+\int -1\mathrm{d}x-2\int x^{2}\mathrm{d}x-2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Najděte si integrál 2 pomocí \int a\mathrm{d}x=ax tabulky společného integrálového pravidla.
x^{2}+2x-x-2\int x^{2}\mathrm{d}x-2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Najděte si integrál -1 pomocí \int a\mathrm{d}x=ax tabulky společného integrálového pravidla.
x^{2}+2x-x-\frac{2x^{3}}{3}-2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Vzhledem k tomu, že \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pro k\neq -1, nahraďte \int x^{2}\mathrm{d}x \frac{x^{3}}{3}. Vynásobte číslo -2 číslem \frac{x^{3}}{3}.
x^{2}+2x-x-\frac{2x^{3}}{3}-\frac{2x^{3}}{3}+\int x\mathrm{d}x
Vzhledem k tomu, že \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pro k\neq -1, nahraďte \int x^{2}\mathrm{d}x \frac{x^{3}}{3}. Vynásobte číslo -2 číslem \frac{x^{3}}{3}.
x^{2}+2x-x-\frac{2x^{3}}{3}-\frac{2x^{3}}{3}+\frac{x^{2}}{2}
Vzhledem k tomu, že \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pro k\neq -1, nahraďte \int x\mathrm{d}x \frac{x^{2}}{2}.
\frac{3x^{2}}{2}+x-\frac{4x^{3}}{3}
Proveďte zjednodušení.
\frac{3}{2}\times 1^{2}+1-\frac{4}{3}\times 1^{3}-\left(\frac{3}{2}\times 0^{2}+0-\frac{4}{3}\times 0^{3}\right)
Určitý integrál je primitivní funkcí výrazu vyhodnocené jako horní limita integrace minus primitivní funkce vyhodnocená jako spodní limita integrace.
\frac{7}{6}
Proveďte zjednodušení.