Přejít k hlavnímu obsahu
Vyhodnotit
Tick mark Image
Derivovat vzhledem k x
Tick mark Image

Podobné úlohy z vyhledávání na webu

Sdílet

\int 12x^{2}\mathrm{d}x+\int 162x\mathrm{d}x+\int 623\mathrm{d}x
Integrujte součet člen po členu.
12\int x^{2}\mathrm{d}x+162\int x\mathrm{d}x+\int 623\mathrm{d}x
V každém členu vytkněte konstantu.
4x^{3}+162\int x\mathrm{d}x+\int 623\mathrm{d}x
Vzhledem k tomu, že \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pro k\neq -1, nahraďte \int x^{2}\mathrm{d}x \frac{x^{3}}{3}. Vynásobte číslo 12 číslem \frac{x^{3}}{3}.
4x^{3}+81x^{2}+\int 623\mathrm{d}x
Vzhledem k tomu, že \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pro k\neq -1, nahraďte \int x\mathrm{d}x \frac{x^{2}}{2}. Vynásobte číslo 162 číslem \frac{x^{2}}{2}.
4x^{3}+81x^{2}+623x
Najděte si integrál 623 pomocí \int a\mathrm{d}x=ax tabulky společného integrálového pravidla.
4x^{3}+81x^{2}+623x+С
Pokud F\left(x\right) je f\left(x\right), je sada všech antiderivátů f\left(x\right) uvedena v F\left(x\right)+C. Proto se k výsledku přidá konstanta integračního C\in \mathrm{R}.