Přejít k hlavnímu obsahu
Vyhodnotit
Tick mark Image

Podobné úlohy z vyhledávání na webu

Sdílet

\int \frac{1}{\sqrt{x}}-3x+5\mathrm{d}x
Nejdříve vyhodnoťte neurčitý integrál.
\int \frac{1}{\sqrt{x}}\mathrm{d}x+\int -3x\mathrm{d}x+\int 5\mathrm{d}x
Integrujte součet člen po členu.
\int \frac{1}{\sqrt{x}}\mathrm{d}x-3\int x\mathrm{d}x+\int 5\mathrm{d}x
V každém členu vytkněte konstantu.
2\sqrt{x}-3\int x\mathrm{d}x+\int 5\mathrm{d}x
Zapište \frac{1}{\sqrt{x}} jako: x^{-\frac{1}{2}}. Vzhledem k tomu, že \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pro k\neq -1, nahraďte \int x^{-\frac{1}{2}}\mathrm{d}x \frac{x^{\frac{1}{2}}}{\frac{1}{2}}. Zjednodušte a převeďte exponenciální tvar na tvar odmocniny.
2\sqrt{x}-\frac{3x^{2}}{2}+\int 5\mathrm{d}x
Vzhledem k tomu, že \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pro k\neq -1, nahraďte \int x\mathrm{d}x \frac{x^{2}}{2}. Vynásobte číslo -3 číslem \frac{x^{2}}{2}.
2\sqrt{x}-\frac{3x^{2}}{2}+5x
Najděte si integrál 5 pomocí \int a\mathrm{d}x=ax tabulky společného integrálového pravidla.
2\times 8^{\frac{1}{2}}-\frac{3}{2}\times 8^{2}+5\times 8-\left(2\times 1^{\frac{1}{2}}-\frac{3}{2}\times 1^{2}+5\times 1\right)
Určitý integrál je primitivní funkcí výrazu vyhodnocené jako horní limita integrace minus primitivní funkce vyhodnocená jako spodní limita integrace.
4\sqrt{2}-\frac{123}{2}
Proveďte zjednodušení.