Přejít k hlavnímu obsahu
Vyhodnotit
Tick mark Image

Podobné úlohy z vyhledávání na webu

Sdílet

\int x^{2}+3x+x^{3}\mathrm{d}x
Nejdříve vyhodnoťte neurčitý integrál.
\int x^{2}\mathrm{d}x+\int 3x\mathrm{d}x+\int x^{3}\mathrm{d}x
Integrujte součet člen po členu.
\int x^{2}\mathrm{d}x+3\int x\mathrm{d}x+\int x^{3}\mathrm{d}x
V každém členu vytkněte konstantu.
\frac{x^{3}}{3}+3\int x\mathrm{d}x+\int x^{3}\mathrm{d}x
Vzhledem k tomu, že \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pro k\neq -1, nahraďte \int x^{2}\mathrm{d}x \frac{x^{3}}{3}.
\frac{x^{3}}{3}+\frac{3x^{2}}{2}+\int x^{3}\mathrm{d}x
Vzhledem k tomu, že \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pro k\neq -1, nahraďte \int x\mathrm{d}x \frac{x^{2}}{2}. Vynásobte číslo 3 číslem \frac{x^{2}}{2}.
\frac{x^{3}}{3}+\frac{3x^{2}}{2}+\frac{x^{4}}{4}
Vzhledem k tomu, že \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pro k\neq -1, nahraďte \int x^{3}\mathrm{d}x \frac{x^{4}}{4}.
\frac{50^{3}}{3}+\frac{3}{2}\times 50^{2}+\frac{50^{4}}{4}-\left(\frac{0^{3}}{3}+\frac{3}{2}\times 0^{2}+\frac{0^{4}}{4}\right)
Určitý integrál je primitivní funkcí výrazu vyhodnocené jako horní limita integrace minus primitivní funkce vyhodnocená jako spodní limita integrace.
\frac{4823750}{3}
Proveďte zjednodušení.