Vyhodnotit
-\frac{3x^{2}}{2}+\frac{2x}{5}+С
Derivovat vzhledem k x
\frac{2}{5}-3x
Sdílet
Zkopírováno do schránky
\int \frac{2}{5}\mathrm{d}x+\int -3x\mathrm{d}x
Integrujte součet člen po členu.
\int \frac{2}{5}\mathrm{d}x-3\int x\mathrm{d}x
V každém členu vytkněte konstantu.
\frac{2x}{5}-3\int x\mathrm{d}x
Najděte si integrál \frac{2}{5} pomocí \int a\mathrm{d}x=ax tabulky společného integrálového pravidla.
\frac{2x}{5}-\frac{3x^{2}}{2}
Vzhledem k tomu, že \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pro k\neq -1, nahraďte \int x\mathrm{d}x \frac{x^{2}}{2}. Vynásobte číslo -3 číslem \frac{x^{2}}{2}.
\frac{2x}{5}-\frac{3x^{2}}{2}+С
Pokud F\left(x\right) je f\left(x\right), je sada všech antiderivátů f\left(x\right) uvedena v F\left(x\right)+C. Proto se k výsledku přidá konstanta integračního C\in \mathrm{R}.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}