Přejít k hlavnímu obsahu
Vyhodnotit
Tick mark Image
Derivovat vzhledem k x
Tick mark Image

Podobné úlohy z vyhledávání na webu

Sdílet

\int \left(\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{2a+10}{a+1}+\frac{\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Pokud chcete sčítat nebo odčítat výrazy, rozšiřte je, aby měly stejné jmenovatele. Vynásobte číslo -a-1 číslem \frac{a+1}{a+1}.
\int \left(\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{2a+10+\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Vzhledem k tomu, že \frac{2a+10}{a+1} a \frac{\left(-a-1\right)\left(a+1\right)}{a+1} mají stejného jmenovatele, můžete je sečíst sečtením jejich čitatelů.
\int \left(\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{2a+10-a^{2}-a-a-1}{a+1}}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Proveďte násobení ve výrazu 2a+10+\left(-a-1\right)\left(a+1\right).
\int \left(\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{9-a^{2}}{a+1}}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Slučte stejné členy ve výrazu 2a+10-a^{2}-a-a-1.
\int \left(\frac{\left(a^{2}-5a+6\right)\left(a+1\right)}{\left(a^{2}+7a+6\right)\left(9-a^{2}\right)}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Vydělte číslo \frac{a^{2}-5a+6}{a^{2}+7a+6} zlomkem \frac{9-a^{2}}{a+1} tak, že číslo \frac{a^{2}-5a+6}{a^{2}+7a+6} vynásobíte převrácenou hodnotou zlomku \frac{9-a^{2}}{a+1}.
\int \left(\frac{\left(a-3\right)\left(a-2\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(a+1\right)\left(a+6\right)}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Rozloží výrazy, které ještě nejsou rozložené v: \frac{\left(a^{2}-5a+6\right)\left(a+1\right)}{\left(a^{2}+7a+6\right)\left(9-a^{2}\right)}.
\int \left(\frac{a-2}{\left(-a-3\right)\left(a+6\right)}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Vykraťte \left(a-3\right)\left(a+1\right) v čitateli a jmenovateli.
\int \left(\frac{-\left(a-2\right)}{\left(a+3\right)\left(a+6\right)}+\frac{a+6}{\left(a+3\right)\left(a+6\right)}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Pokud chcete sčítat nebo odčítat výrazy, rozšiřte je, aby měly stejné jmenovatele. Nejmenší společný násobek pro \left(-a-3\right)\left(a+6\right) a a+3 je \left(a+3\right)\left(a+6\right). Vynásobte číslo \frac{a-2}{\left(-a-3\right)\left(a+6\right)} číslem \frac{-1}{-1}. Vynásobte číslo \frac{1}{a+3} číslem \frac{a+6}{a+6}.
\int \frac{-\left(a-2\right)+a+6}{\left(a+3\right)\left(a+6\right)}\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Vzhledem k tomu, že \frac{-\left(a-2\right)}{\left(a+3\right)\left(a+6\right)} a \frac{a+6}{\left(a+3\right)\left(a+6\right)} mají stejného jmenovatele, můžete je sečíst sečtením jejich čitatelů.
\int \frac{-a+2+a+6}{\left(a+3\right)\left(a+6\right)}\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Proveďte násobení ve výrazu -\left(a-2\right)+a+6.
\int \frac{8}{\left(a+3\right)\left(a+6\right)}\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Slučte stejné členy ve výrazu -a+2+a+6.
\int \frac{8\left(2a^{2}+5a-3\right)}{\left(a+3\right)\left(a+6\right)\times 2a^{2}}\mathrm{d}x
Vynásobte zlomek \frac{8}{\left(a+3\right)\left(a+6\right)} zlomkem \frac{2a^{2}+5a-3}{2a^{2}} tak, že vynásobíte čitatele čitatelem a jmenovatele jmenovatelem.
\int \frac{4\left(2a^{2}+5a-3\right)}{\left(a+3\right)\left(a+6\right)a^{2}}\mathrm{d}x
Vykraťte 2 v čitateli a jmenovateli.
\int \frac{4\left(2a-1\right)\left(a+3\right)}{\left(a+3\right)\left(a+6\right)a^{2}}\mathrm{d}x
Rozloží výrazy, které ještě nejsou rozložené v: \frac{4\left(2a^{2}+5a-3\right)}{\left(a+3\right)\left(a+6\right)a^{2}}.
\int \frac{4\left(2a-1\right)}{\left(a+6\right)a^{2}}\mathrm{d}x
Vykraťte a+3 v čitateli a jmenovateli.
\int \frac{8a-4}{\left(a+6\right)a^{2}}\mathrm{d}x
S využitím distributivnosti vynásobte číslo 4 číslem 2a-1.
\int \frac{8a-4}{a^{3}+6a^{2}}\mathrm{d}x
S využitím distributivnosti vynásobte číslo a+6 číslem a^{2}.
\frac{8a-4}{a^{3}+6a^{2}}x
Najděte si integrál \frac{8a-4}{a^{3}+6a^{2}} pomocí \int a\mathrm{d}x=ax tabulky společného integrálového pravidla.
\frac{\left(8a-4\right)x}{a^{3}+6a^{2}}
Proveďte zjednodušení.
\frac{\left(8a-4\right)x}{a^{3}+6a^{2}}+С
Pokud F\left(x\right) je f\left(x\right), je sada všech antiderivátů f\left(x\right) uvedena v F\left(x\right)+C. Proto se k výsledku přidá konstanta integračního C\in \mathrm{R}.