Vyhodnotit
\frac{1}{6}\approx 0,166666667
Rozložit
\frac{1}{2 \cdot 3} = 0,16666666666666666
Sdílet
Zkopírováno do schránky
\frac{12}{9}-\frac{1}{9}-\frac{1}{3}-\frac{2}{3}-1+\frac{17}{18}
Nejmenší společný násobek čísel 3 a 9 je 9. Převeďte \frac{4}{3} a \frac{1}{9} na zlomky se jmenovatelem 9.
\frac{12-1}{9}-\frac{1}{3}-\frac{2}{3}-1+\frac{17}{18}
Vzhledem k tomu, že \frac{12}{9} a \frac{1}{9} mají stejného jmenovatele, můžete je odečíst odečtením jejich čitatelů.
\frac{11}{9}-\frac{1}{3}-\frac{2}{3}-1+\frac{17}{18}
Odečtěte 1 od 12 a dostanete 11.
\frac{11}{9}-\frac{3}{9}-\frac{2}{3}-1+\frac{17}{18}
Nejmenší společný násobek čísel 9 a 3 je 9. Převeďte \frac{11}{9} a \frac{1}{3} na zlomky se jmenovatelem 9.
\frac{11-3}{9}-\frac{2}{3}-1+\frac{17}{18}
Vzhledem k tomu, že \frac{11}{9} a \frac{3}{9} mají stejného jmenovatele, můžete je odečíst odečtením jejich čitatelů.
\frac{8}{9}-\frac{2}{3}-1+\frac{17}{18}
Odečtěte 3 od 11 a dostanete 8.
\frac{8}{9}-\frac{6}{9}-1+\frac{17}{18}
Nejmenší společný násobek čísel 9 a 3 je 9. Převeďte \frac{8}{9} a \frac{2}{3} na zlomky se jmenovatelem 9.
\frac{8-6}{9}-1+\frac{17}{18}
Vzhledem k tomu, že \frac{8}{9} a \frac{6}{9} mají stejného jmenovatele, můžete je odečíst odečtením jejich čitatelů.
\frac{2}{9}-1+\frac{17}{18}
Odečtěte 6 od 8 a dostanete 2.
\frac{2}{9}-\frac{9}{9}+\frac{17}{18}
Umožňuje převést 1 na zlomek \frac{9}{9}.
\frac{2-9}{9}+\frac{17}{18}
Vzhledem k tomu, že \frac{2}{9} a \frac{9}{9} mají stejného jmenovatele, můžete je odečíst odečtením jejich čitatelů.
-\frac{7}{9}+\frac{17}{18}
Odečtěte 9 od 2 a dostanete -7.
-\frac{14}{18}+\frac{17}{18}
Nejmenší společný násobek čísel 9 a 18 je 18. Převeďte -\frac{7}{9} a \frac{17}{18} na zlomky se jmenovatelem 18.
\frac{-14+17}{18}
Vzhledem k tomu, že -\frac{14}{18} a \frac{17}{18} mají stejného jmenovatele, můžete je sečíst sečtením jejich čitatelů.
\frac{3}{18}
Sečtením -14 a 17 získáte 3.
\frac{1}{6}
Vykraťte zlomek \frac{3}{18} na základní tvar vytknutím a vykrácením hodnoty 3.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}