Přejít k hlavnímu obsahu
Derivovat vzhledem k x
Tick mark Image
Vyhodnotit
Tick mark Image
Graf

Podobné úlohy z vyhledávání na webu

Sdílet

-\left(3x^{\frac{2}{3}}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(3x^{\frac{2}{3}})
Pokud je F složením dvou diferencovatelných funkcí f\left(u\right) a u=g\left(x\right), tzn. pokud F\left(x\right)=f\left(g\left(x\right)\right), derivací funkce f je násobek derivace F vzhledem k u a derivace g vzhledem k x, tzn. \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(3x^{\frac{2}{3}}\right)^{-2}\times \frac{2}{3}\times 3x^{\frac{2}{3}-1}
Derivace mnohočlenu je součtem derivací jeho členů. Derivace konstanty je 0. Derivace členu ax^{n} je nax^{n-1}.
-2x^{-\frac{1}{3}}\times \left(3x^{\frac{2}{3}}\right)^{-2}
Proveďte zjednodušení.