Vyřešte pro: x
x=-5
x=0
Graf
Sdílet
Zkopírováno do schránky
3x\left(x+3\right)-2\left(x+1\right)^{2}+2=0
Vynásobte obě strany rovnice číslem 6, nejmenším společným násobkem čísel 2,3.
3x^{2}+9x-2\left(x+1\right)^{2}+2=0
S využitím distributivnosti vynásobte číslo 3x číslem x+3.
3x^{2}+9x-2\left(x^{2}+2x+1\right)+2=0
Rozviňte výraz \left(x+1\right)^{2} podle binomické věty \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
3x^{2}+9x-2x^{2}-4x-2+2=0
S využitím distributivnosti vynásobte číslo -2 číslem x^{2}+2x+1.
x^{2}+9x-4x-2+2=0
Sloučením 3x^{2} a -2x^{2} získáte x^{2}.
x^{2}+5x-2+2=0
Sloučením 9x a -4x získáte 5x.
x^{2}+5x=0
Sečtením -2 a 2 získáte 0.
x\left(x+5\right)=0
Vytkněte x před závorku.
x=0 x=-5
Chcete-li najít řešení rovnic, vyřešte x=0 a x+5=0.
3x\left(x+3\right)-2\left(x+1\right)^{2}+2=0
Vynásobte obě strany rovnice číslem 6, nejmenším společným násobkem čísel 2,3.
3x^{2}+9x-2\left(x+1\right)^{2}+2=0
S využitím distributivnosti vynásobte číslo 3x číslem x+3.
3x^{2}+9x-2\left(x^{2}+2x+1\right)+2=0
Rozviňte výraz \left(x+1\right)^{2} podle binomické věty \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
3x^{2}+9x-2x^{2}-4x-2+2=0
S využitím distributivnosti vynásobte číslo -2 číslem x^{2}+2x+1.
x^{2}+9x-4x-2+2=0
Sloučením 3x^{2} a -2x^{2} získáte x^{2}.
x^{2}+5x-2+2=0
Sloučením 9x a -4x získáte 5x.
x^{2}+5x=0
Sečtením -2 a 2 získáte 0.
x=\frac{-5±\sqrt{5^{2}}}{2}
Tato rovnice má standardní tvar: ax^{2}+bx+c=0. Do kvadratického vzorce, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, dosaďte 1 za a, 5 za b a 0 za c.
x=\frac{-5±5}{2}
Vypočítejte druhou odmocninu čísla 5^{2}.
x=\frac{0}{2}
Teď vyřešte rovnici x=\frac{-5±5}{2}, když ± je plus. Přidejte uživatele -5 do skupiny 5.
x=0
Vydělte číslo 0 číslem 2.
x=-\frac{10}{2}
Teď vyřešte rovnici x=\frac{-5±5}{2}, když ± je minus. Odečtěte číslo 5 od čísla -5.
x=-5
Vydělte číslo -10 číslem 2.
x=0 x=-5
Rovnice je teď vyřešená.
3x\left(x+3\right)-2\left(x+1\right)^{2}+2=0
Vynásobte obě strany rovnice číslem 6, nejmenším společným násobkem čísel 2,3.
3x^{2}+9x-2\left(x+1\right)^{2}+2=0
S využitím distributivnosti vynásobte číslo 3x číslem x+3.
3x^{2}+9x-2\left(x^{2}+2x+1\right)+2=0
Rozviňte výraz \left(x+1\right)^{2} podle binomické věty \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
3x^{2}+9x-2x^{2}-4x-2+2=0
S využitím distributivnosti vynásobte číslo -2 číslem x^{2}+2x+1.
x^{2}+9x-4x-2+2=0
Sloučením 3x^{2} a -2x^{2} získáte x^{2}.
x^{2}+5x-2+2=0
Sloučením 9x a -4x získáte 5x.
x^{2}+5x=0
Sečtením -2 a 2 získáte 0.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=\left(\frac{5}{2}\right)^{2}
Vydělte 5, koeficient x termínu 2 k získání \frac{5}{2}. Potom přidejte čtvereček \frac{5}{2} na obě strany rovnice. Tímto krokem bude levá strana rovnice ve výrazu o dokonalý čtverec.
x^{2}+5x+\frac{25}{4}=\frac{25}{4}
Umocněte zlomek \frac{5}{2} na druhou tak, že umocníte na druhou čitatele i jmenovatele zlomku.
\left(x+\frac{5}{2}\right)^{2}=\frac{25}{4}
Činitel x^{2}+5x+\frac{25}{4}. Obecně platí, že pokud je x^{2}+bx+cdokonalý čtverec, dá se vždy rozložit jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Vypočítejte druhou odmocninu obou stran rovnice.
x+\frac{5}{2}=\frac{5}{2} x+\frac{5}{2}=-\frac{5}{2}
Proveďte zjednodušení.
x=0 x=-5
Odečtěte hodnotu \frac{5}{2} od obou stran rovnice.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}