Vyřešte pro: A
A=\frac{ey-\pi x}{xy}
x\neq 0\text{ and }y\neq 0
Vyřešte pro: x
x=\frac{ey}{Ay+\pi }
y\neq 0\text{ and }\left(A=0\text{ or }y\neq -\frac{\pi }{A}\right)
Graf
Sdílet
Zkopírováno do schránky
ye-x\pi =Axy
Vynásobte obě strany rovnice číslem xy, nejmenším společným násobkem čísel x,y.
Axy=ye-x\pi
Přehoďte strany rovnice tak, aby všechny proměnné byly na její levé straně.
Axy=-\pi x+ey
Změňte pořadí členů.
xyA=ey-\pi x
Rovnice je ve standardním tvaru.
\frac{xyA}{xy}=\frac{ey-\pi x}{xy}
Vydělte obě strany hodnotou xy.
A=\frac{ey-\pi x}{xy}
Dělení číslem xy ruší násobení číslem xy.
A=\frac{e}{x}-\frac{\pi }{y}
Vydělte číslo ey-\pi x číslem xy.
ye-x\pi =Axy
Proměnná x se nemůže rovnat hodnotě 0, protože není definováno dělení nulou. Vynásobte obě strany rovnice číslem xy, nejmenším společným násobkem čísel x,y.
ye-x\pi -Axy=0
Odečtěte Axy od obou stran.
-x\pi -Axy=-ye
Odečtěte ye od obou stran. Po odečtení hodnoty od nuly dostaneme stejnou zápornou hodnotu.
\left(-\pi -Ay\right)x=-ye
Slučte všechny členy obsahující x.
\left(-Ay-\pi \right)x=-ey
Rovnice je ve standardním tvaru.
\frac{\left(-Ay-\pi \right)x}{-Ay-\pi }=-\frac{ey}{-Ay-\pi }
Vydělte obě strany hodnotou -\pi -yA.
x=-\frac{ey}{-Ay-\pi }
Dělení číslem -\pi -yA ruší násobení číslem -\pi -yA.
x=\frac{ey}{Ay+\pi }
Vydělte číslo -ye číslem -\pi -yA.
x=\frac{ey}{Ay+\pi }\text{, }x\neq 0
Proměnná x se nemůže rovnat 0.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}