Přejít k hlavnímu obsahu
Vyhodnotit
Tick mark Image
Derivovat vzhledem k x
Tick mark Image

Podobné úlohy z vyhledávání na webu

Sdílet

-4\left(2x^{3}-3x^{1}\right)^{-4-1}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{3}-3x^{1})
Pokud je F složením dvou diferencovatelných funkcí f\left(u\right) a u=g\left(x\right), tzn. pokud F\left(x\right)=f\left(g\left(x\right)\right), derivací funkce f je násobek derivace F vzhledem k u a derivace g vzhledem k x, tzn. \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-4\left(2x^{3}-3x^{1}\right)^{-5}\left(3\times 2x^{3-1}-3x^{1-1}\right)
Derivace mnohočlenu je součtem derivací jeho členů. Derivace konstanty je 0. Derivace členu ax^{n} je nax^{n-1}.
\left(2x^{3}-3x^{1}\right)^{-5}\left(-24x^{2}+12x^{0}\right)
Proveďte zjednodušení.
\left(2x^{3}-3x\right)^{-5}\left(-24x^{2}+12x^{0}\right)
Pro všechny členy t, t^{1}=t.
\left(2x^{3}-3x\right)^{-5}\left(-24x^{2}+12\times 1\right)
Pro všechny členy t s výjimkou 0, t^{0}=1.
\left(2x^{3}-3x\right)^{-5}\left(-24x^{2}+12\right)
Pro všechny členy t, t\times 1=t a 1t=t.