Vyhodnotit
\frac{9}{10}-\frac{6}{5}i=0,9-1,2i
Reálná část
\frac{9}{10} = 0,9
Sdílet
Zkopírováno do schránky
\frac{6-3i}{4+2i}\times 1
Vydělte číslo 4+2i číslem 4+2i a dostanete 1.
\frac{\left(6-3i\right)\left(4-2i\right)}{\left(4+2i\right)\left(4-2i\right)}\times 1
Čitatele i jmenovatele (\frac{6-3i}{4+2i}) vynásobte komplexně sdruženým číslem jmenovatele (4-2i).
\frac{18-24i}{20}\times 1
Proveďte násobení ve výrazu \frac{\left(6-3i\right)\left(4-2i\right)}{\left(4+2i\right)\left(4-2i\right)}.
\left(\frac{9}{10}-\frac{6}{5}i\right)\times 1
Vydělte číslo 18-24i číslem 20 a dostanete \frac{9}{10}-\frac{6}{5}i.
\frac{9}{10}-\frac{6}{5}i
Vynásobením \frac{9}{10}-\frac{6}{5}i a 1 získáte \frac{9}{10}-\frac{6}{5}i.
Re(\frac{6-3i}{4+2i}\times 1)
Vydělte číslo 4+2i číslem 4+2i a dostanete 1.
Re(\frac{\left(6-3i\right)\left(4-2i\right)}{\left(4+2i\right)\left(4-2i\right)}\times 1)
Čitatele i jmenovatele (\frac{6-3i}{4+2i}) vynásobte komplexně sdruženým číslem jmenovatele (4-2i).
Re(\frac{18-24i}{20}\times 1)
Proveďte násobení ve výrazu \frac{\left(6-3i\right)\left(4-2i\right)}{\left(4+2i\right)\left(4-2i\right)}.
Re(\left(\frac{9}{10}-\frac{6}{5}i\right)\times 1)
Vydělte číslo 18-24i číslem 20 a dostanete \frac{9}{10}-\frac{6}{5}i.
Re(\frac{9}{10}-\frac{6}{5}i)
Vynásobením \frac{9}{10}-\frac{6}{5}i a 1 získáte \frac{9}{10}-\frac{6}{5}i.
\frac{9}{10}
Reálná část čísla \frac{9}{10}-\frac{6}{5}i je \frac{9}{10}.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}