Vyhodnotit
\frac{42}{11}\approx 3,818181818
Rozložit
\frac{2 \cdot 3 \cdot 7}{11} = 3\frac{9}{11} = 3,8181818181818183
Sdílet
Zkopírováno do schránky
\frac{\left(4+\sqrt{5}\right)\left(4+\sqrt{5}\right)}{\left(4-\sqrt{5}\right)\left(4+\sqrt{5}\right)}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Převeďte jmenovatele \frac{4+\sqrt{5}}{4-\sqrt{5}} vynásobením čitatele a jmenovatele 4+\sqrt{5}.
\frac{\left(4+\sqrt{5}\right)\left(4+\sqrt{5}\right)}{4^{2}-\left(\sqrt{5}\right)^{2}}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Zvažte \left(4-\sqrt{5}\right)\left(4+\sqrt{5}\right). Násobení je možné převést na rozdíl druhých mocnin pomocí tohoto pravidla: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+\sqrt{5}\right)\left(4+\sqrt{5}\right)}{16-5}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Umocněte číslo 4 na druhou. Umocněte číslo \sqrt{5} na druhou.
\frac{\left(4+\sqrt{5}\right)\left(4+\sqrt{5}\right)}{11}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Odečtěte 5 od 16 a dostanete 11.
\frac{\left(4+\sqrt{5}\right)^{2}}{11}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Vynásobením 4+\sqrt{5} a 4+\sqrt{5} získáte \left(4+\sqrt{5}\right)^{2}.
\frac{16+8\sqrt{5}+\left(\sqrt{5}\right)^{2}}{11}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Rozviňte výraz \left(4+\sqrt{5}\right)^{2} podle binomické věty \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
\frac{16+8\sqrt{5}+5}{11}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Mocnina hodnoty \sqrt{5} je 5.
\frac{21+8\sqrt{5}}{11}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Sečtením 16 a 5 získáte 21.
\frac{21+8\sqrt{5}}{11}+\frac{\left(4-\sqrt{5}\right)\left(4-\sqrt{5}\right)}{\left(4+\sqrt{5}\right)\left(4-\sqrt{5}\right)}
Převeďte jmenovatele \frac{4-\sqrt{5}}{4+\sqrt{5}} vynásobením čitatele a jmenovatele 4-\sqrt{5}.
\frac{21+8\sqrt{5}}{11}+\frac{\left(4-\sqrt{5}\right)\left(4-\sqrt{5}\right)}{4^{2}-\left(\sqrt{5}\right)^{2}}
Zvažte \left(4+\sqrt{5}\right)\left(4-\sqrt{5}\right). Násobení je možné převést na rozdíl druhých mocnin pomocí tohoto pravidla: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{21+8\sqrt{5}}{11}+\frac{\left(4-\sqrt{5}\right)\left(4-\sqrt{5}\right)}{16-5}
Umocněte číslo 4 na druhou. Umocněte číslo \sqrt{5} na druhou.
\frac{21+8\sqrt{5}}{11}+\frac{\left(4-\sqrt{5}\right)\left(4-\sqrt{5}\right)}{11}
Odečtěte 5 od 16 a dostanete 11.
\frac{21+8\sqrt{5}}{11}+\frac{\left(4-\sqrt{5}\right)^{2}}{11}
Vynásobením 4-\sqrt{5} a 4-\sqrt{5} získáte \left(4-\sqrt{5}\right)^{2}.
\frac{21+8\sqrt{5}}{11}+\frac{16-8\sqrt{5}+\left(\sqrt{5}\right)^{2}}{11}
Rozviňte výraz \left(4-\sqrt{5}\right)^{2} podle binomické věty \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
\frac{21+8\sqrt{5}}{11}+\frac{16-8\sqrt{5}+5}{11}
Mocnina hodnoty \sqrt{5} je 5.
\frac{21+8\sqrt{5}}{11}+\frac{21-8\sqrt{5}}{11}
Sečtením 16 a 5 získáte 21.
\frac{21+8\sqrt{5}+21-8\sqrt{5}}{11}
Vzhledem k tomu, že \frac{21+8\sqrt{5}}{11} a \frac{21-8\sqrt{5}}{11} mají stejného jmenovatele, můžete je sečíst sečtením jejich čitatelů.
\frac{42}{11}
Proveďte výpočty ve výrazu 21+8\sqrt{5}+21-8\sqrt{5}.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}