Přejít k hlavnímu obsahu
Vyhodnotit
Tick mark Image

Podobné úlohy z vyhledávání na webu

Sdílet

\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{\left(2\sqrt{7}+1\right)\left(2\sqrt{7}-1\right)}
Převeďte jmenovatele \frac{3\sqrt{3}-2}{2\sqrt{7}+1} vynásobením čitatele a jmenovatele 2\sqrt{7}-1.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{\left(2\sqrt{7}\right)^{2}-1^{2}}
Zvažte \left(2\sqrt{7}+1\right)\left(2\sqrt{7}-1\right). Násobení je možné převést na rozdíl druhých mocnin pomocí tohoto pravidla: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{2^{2}\left(\sqrt{7}\right)^{2}-1^{2}}
Roznásobte \left(2\sqrt{7}\right)^{2}.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{4\left(\sqrt{7}\right)^{2}-1^{2}}
Výpočtem 2 na 2 získáte 4.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{4\times 7-1^{2}}
Mocnina hodnoty \sqrt{7} je 7.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{28-1^{2}}
Vynásobením 4 a 7 získáte 28.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{28-1}
Výpočtem 1 na 2 získáte 1.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{27}
Odečtěte 1 od 28 a dostanete 27.
\frac{6\sqrt{3}\sqrt{7}-3\sqrt{3}-4\sqrt{7}+2}{27}
S využitím distributivnosti roznásobte každý člen výrazu 3\sqrt{3}-2 každým členem výrazu 2\sqrt{7}-1.
\frac{6\sqrt{21}-3\sqrt{3}-4\sqrt{7}+2}{27}
Chcete-li vynásobit \sqrt{3} a \sqrt{7}, vynásobte čísla v druhé odmocnině.