Vyhodnotit
-\frac{2c^{3}}{3}-\frac{c^{2}}{3}+c
Roznásobit
-\frac{2c^{3}}{3}-\frac{c^{2}}{3}+c
Sdílet
Zkopírováno do schránky
\frac{2c+3}{3}c\left(1-c\right)
Když jednotlivé členy vzorce 2-2c vydělíte 2, dostanete 1-c.
\frac{\left(2c+3\right)c}{3}\left(1-c\right)
Vyjádřete \frac{2c+3}{3}c jako jeden zlomek.
\frac{\left(2c+3\right)c\left(1-c\right)}{3}
Vyjádřete \frac{\left(2c+3\right)c}{3}\left(1-c\right) jako jeden zlomek.
\frac{\left(2c^{2}+3c\right)\left(1-c\right)}{3}
S využitím distributivnosti vynásobte číslo 2c+3 číslem c.
\frac{2c^{2}-2c^{3}+3c-3c^{2}}{3}
S využitím distributivnosti roznásobte každý člen výrazu 2c^{2}+3c každým členem výrazu 1-c.
\frac{-c^{2}-2c^{3}+3c}{3}
Sloučením 2c^{2} a -3c^{2} získáte -c^{2}.
\frac{2c+3}{3}c\left(1-c\right)
Když jednotlivé členy vzorce 2-2c vydělíte 2, dostanete 1-c.
\frac{\left(2c+3\right)c}{3}\left(1-c\right)
Vyjádřete \frac{2c+3}{3}c jako jeden zlomek.
\frac{\left(2c+3\right)c\left(1-c\right)}{3}
Vyjádřete \frac{\left(2c+3\right)c}{3}\left(1-c\right) jako jeden zlomek.
\frac{\left(2c^{2}+3c\right)\left(1-c\right)}{3}
S využitím distributivnosti vynásobte číslo 2c+3 číslem c.
\frac{2c^{2}-2c^{3}+3c-3c^{2}}{3}
S využitím distributivnosti roznásobte každý člen výrazu 2c^{2}+3c každým členem výrazu 1-c.
\frac{-c^{2}-2c^{3}+3c}{3}
Sloučením 2c^{2} a -3c^{2} získáte -c^{2}.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}