Přejít k hlavnímu obsahu
Vyhodnotit
Tick mark Image
Roznásobit
Tick mark Image

Podobné úlohy z vyhledávání na webu

Sdílet

\frac{\frac{8-5a}{2+7a+6}}{\frac{2a+10}{a+1}-a-1}+\frac{1}{a+3}
Sečtením 2 a 6 získáte 8.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10}{a+1}-a-1}+\frac{1}{a+3}
Sečtením 2 a 6 získáte 8.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10}{a+1}+\frac{\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}
Pokud chcete sčítat nebo odčítat výrazy, rozšiřte je, aby měly stejné jmenovatele. Vynásobte číslo -a-1 číslem \frac{a+1}{a+1}.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10+\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}
Vzhledem k tomu, že \frac{2a+10}{a+1} a \frac{\left(-a-1\right)\left(a+1\right)}{a+1} mají stejného jmenovatele, můžete je sečíst sečtením jejich čitatelů.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10-a^{2}-a-a-1}{a+1}}+\frac{1}{a+3}
Proveďte násobení ve výrazu 2a+10+\left(-a-1\right)\left(a+1\right).
\frac{\frac{8-5a}{8+7a}}{\frac{9-a^{2}}{a+1}}+\frac{1}{a+3}
Slučte stejné členy ve výrazu 2a+10-a^{2}-a-a-1.
\frac{\left(8-5a\right)\left(a+1\right)}{\left(8+7a\right)\left(9-a^{2}\right)}+\frac{1}{a+3}
Vydělte číslo \frac{8-5a}{8+7a} zlomkem \frac{9-a^{2}}{a+1} tak, že číslo \frac{8-5a}{8+7a} vynásobíte převrácenou hodnotou zlomku \frac{9-a^{2}}{a+1}.
\frac{\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(7a+8\right)}+\frac{1}{a+3}
Rozložte \left(8+7a\right)\left(9-a^{2}\right) na součin.
\frac{-\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}+\frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Pokud chcete sčítat nebo odčítat výrazy, rozšiřte je, aby měly stejné jmenovatele. Nejmenší společný násobek pro \left(a-3\right)\left(-a-3\right)\left(7a+8\right) a a+3 je \left(a-3\right)\left(a+3\right)\left(7a+8\right). Vynásobte číslo \frac{\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(7a+8\right)} číslem \frac{-1}{-1}. Vynásobte číslo \frac{1}{a+3} číslem \frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(7a+8\right)}.
\frac{-\left(8-5a\right)\left(a+1\right)+\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Vzhledem k tomu, že \frac{-\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)} a \frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)} mají stejného jmenovatele, můžete je sečíst sečtením jejich čitatelů.
\frac{-8a-8+5a^{2}+5a+7a^{2}+8a-21a-24}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Proveďte násobení ve výrazu -\left(8-5a\right)\left(a+1\right)+\left(a-3\right)\left(7a+8\right).
\frac{-16a-32+12a^{2}}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Slučte stejné členy ve výrazu -8a-8+5a^{2}+5a+7a^{2}+8a-21a-24.
\frac{-16a-32+12a^{2}}{7a^{3}+8a^{2}-63a-72}
Roznásobte \left(a-3\right)\left(a+3\right)\left(7a+8\right).
\frac{\frac{8-5a}{2+7a+6}}{\frac{2a+10}{a+1}-a-1}+\frac{1}{a+3}
Sečtením 2 a 6 získáte 8.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10}{a+1}-a-1}+\frac{1}{a+3}
Sečtením 2 a 6 získáte 8.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10}{a+1}+\frac{\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}
Pokud chcete sčítat nebo odčítat výrazy, rozšiřte je, aby měly stejné jmenovatele. Vynásobte číslo -a-1 číslem \frac{a+1}{a+1}.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10+\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}
Vzhledem k tomu, že \frac{2a+10}{a+1} a \frac{\left(-a-1\right)\left(a+1\right)}{a+1} mají stejného jmenovatele, můžete je sečíst sečtením jejich čitatelů.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10-a^{2}-a-a-1}{a+1}}+\frac{1}{a+3}
Proveďte násobení ve výrazu 2a+10+\left(-a-1\right)\left(a+1\right).
\frac{\frac{8-5a}{8+7a}}{\frac{9-a^{2}}{a+1}}+\frac{1}{a+3}
Slučte stejné členy ve výrazu 2a+10-a^{2}-a-a-1.
\frac{\left(8-5a\right)\left(a+1\right)}{\left(8+7a\right)\left(9-a^{2}\right)}+\frac{1}{a+3}
Vydělte číslo \frac{8-5a}{8+7a} zlomkem \frac{9-a^{2}}{a+1} tak, že číslo \frac{8-5a}{8+7a} vynásobíte převrácenou hodnotou zlomku \frac{9-a^{2}}{a+1}.
\frac{\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(7a+8\right)}+\frac{1}{a+3}
Rozložte \left(8+7a\right)\left(9-a^{2}\right) na součin.
\frac{-\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}+\frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Pokud chcete sčítat nebo odčítat výrazy, rozšiřte je, aby měly stejné jmenovatele. Nejmenší společný násobek pro \left(a-3\right)\left(-a-3\right)\left(7a+8\right) a a+3 je \left(a-3\right)\left(a+3\right)\left(7a+8\right). Vynásobte číslo \frac{\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(7a+8\right)} číslem \frac{-1}{-1}. Vynásobte číslo \frac{1}{a+3} číslem \frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(7a+8\right)}.
\frac{-\left(8-5a\right)\left(a+1\right)+\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Vzhledem k tomu, že \frac{-\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)} a \frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)} mají stejného jmenovatele, můžete je sečíst sečtením jejich čitatelů.
\frac{-8a-8+5a^{2}+5a+7a^{2}+8a-21a-24}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Proveďte násobení ve výrazu -\left(8-5a\right)\left(a+1\right)+\left(a-3\right)\left(7a+8\right).
\frac{-16a-32+12a^{2}}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Slučte stejné členy ve výrazu -8a-8+5a^{2}+5a+7a^{2}+8a-21a-24.
\frac{-16a-32+12a^{2}}{7a^{3}+8a^{2}-63a-72}
Roznásobte \left(a-3\right)\left(a+3\right)\left(7a+8\right).