Vyhodnotit
\frac{5x-4}{\left(x-2\right)\left(x+1\right)}
Derivovat vzhledem k x
\frac{-5x^{2}+8x-14}{\left(\left(x-2\right)\left(x+1\right)\right)^{2}}
Graf
Sdílet
Zkopírováno do schránky
\frac{2\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
Pokud chcete sčítat nebo odčítat výrazy, rozšiřte je, aby měly stejné jmenovatele. Nejmenší společný násobek pro x-2 a x+1 je \left(x-2\right)\left(x+1\right). Vynásobte číslo \frac{2}{x-2} číslem \frac{x+1}{x+1}. Vynásobte číslo \frac{3}{x+1} číslem \frac{x-2}{x-2}.
\frac{2\left(x+1\right)+3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
Vzhledem k tomu, že \frac{2\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} a \frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} mají stejného jmenovatele, můžete je sečíst sečtením jejich čitatelů.
\frac{2x+2+3x-6}{\left(x-2\right)\left(x+1\right)}
Proveďte násobení ve výrazu 2\left(x+1\right)+3\left(x-2\right).
\frac{5x-4}{\left(x-2\right)\left(x+1\right)}
Slučte stejné členy ve výrazu 2x+2+3x-6.
\frac{5x-4}{x^{2}-x-2}
Roznásobte \left(x-2\right)\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)})
Pokud chcete sčítat nebo odčítat výrazy, rozšiřte je, aby měly stejné jmenovatele. Nejmenší společný násobek pro x-2 a x+1 je \left(x-2\right)\left(x+1\right). Vynásobte číslo \frac{2}{x-2} číslem \frac{x+1}{x+1}. Vynásobte číslo \frac{3}{x+1} číslem \frac{x-2}{x-2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+1\right)+3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)})
Vzhledem k tomu, že \frac{2\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} a \frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} mají stejného jmenovatele, můžete je sečíst sečtením jejich čitatelů.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+2+3x-6}{\left(x-2\right)\left(x+1\right)})
Proveďte násobení ve výrazu 2\left(x+1\right)+3\left(x-2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-4}{\left(x-2\right)\left(x+1\right)})
Slučte stejné členy ve výrazu 2x+2+3x-6.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-4}{x^{2}+x-2x-2})
S využitím distributivnosti roznásobte každý člen výrazu x-2 každým členem výrazu x+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-4}{x^{2}-x-2})
Sloučením x a -2x získáte -x.
\frac{\left(x^{2}-x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(5x^{1}-4)-\left(5x^{1}-4\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1}-2)}{\left(x^{2}-x^{1}-2\right)^{2}}
V případě jakýchkoli dvou diferencovatelných funkcí je derivace podílu dvou funkcí rozdílem mezi násobkem jmenovatele a derivace čitatele a násobkem čitatele a derivace jmenovatele, to celé děleno jmenovatelem na druhou.
\frac{\left(x^{2}-x^{1}-2\right)\times 5x^{1-1}-\left(5x^{1}-4\right)\left(2x^{2-1}-x^{1-1}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Derivace mnohočlenu je součtem derivací jeho členů. Derivace konstanty je 0. Derivace členu ax^{n} je nax^{n-1}.
\frac{\left(x^{2}-x^{1}-2\right)\times 5x^{0}-\left(5x^{1}-4\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Proveďte zjednodušení.
\frac{x^{2}\times 5x^{0}-x^{1}\times 5x^{0}-2\times 5x^{0}-\left(5x^{1}-4\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Vynásobte číslo x^{2}-x^{1}-2 číslem 5x^{0}.
\frac{x^{2}\times 5x^{0}-x^{1}\times 5x^{0}-2\times 5x^{0}-\left(5x^{1}\times 2x^{1}+5x^{1}\left(-1\right)x^{0}-4\times 2x^{1}-4\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Vynásobte číslo 5x^{1}-4 číslem 2x^{1}-x^{0}.
\frac{5x^{2}-5x^{1}-2\times 5x^{0}-\left(5\times 2x^{1+1}+5\left(-1\right)x^{1}-4\times 2x^{1}-4\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Pokud chcete vynásobit mocniny stejného mocněnce, sečtěte jejich mocnitele.
\frac{5x^{2}-5x^{1}-10x^{0}-\left(10x^{2}-5x^{1}-8x^{1}+4x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Proveďte zjednodušení.
\frac{-5x^{2}+8x^{1}-14x^{0}}{\left(x^{2}-x^{1}-2\right)^{2}}
Slučte stejné členy.
\frac{-5x^{2}+8x-14x^{0}}{\left(x^{2}-x-2\right)^{2}}
Pro všechny členy t, t^{1}=t.
\frac{-5x^{2}+8x-14}{\left(x^{2}-x-2\right)^{2}}
Pro všechny členy t s výjimkou 0, t^{0}=1.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}