Vyřešte pro: u_13
u_{13}=\frac{u_{k}^{2}+1300}{90}
Vyřešte pro: u_k (complex solution)
u_{k}=-\sqrt{90u_{13}-1300}
u_{k}=\sqrt{90u_{13}-1300}
Vyřešte pro: u_k
u_{k}=\sqrt{90u_{13}-1300}
u_{k}=-\sqrt{90u_{13}-1300}\text{, }u_{13}\geq \frac{130}{9}
Sdílet
Zkopírováno do schránky
2u_{k}^{2}-180u_{13}+866\times 3+2=0
Vynásobte obě strany rovnice hodnotou 3.
2u_{k}^{2}-180u_{13}+2598+2=0
Vynásobením 866 a 3 získáte 2598.
2u_{k}^{2}-180u_{13}+2600=0
Sečtením 2598 a 2 získáte 2600.
-180u_{13}+2600=-2u_{k}^{2}
Odečtěte 2u_{k}^{2} od obou stran. Po odečtení hodnoty od nuly dostaneme stejnou zápornou hodnotu.
-180u_{13}=-2u_{k}^{2}-2600
Odečtěte 2600 od obou stran.
\frac{-180u_{13}}{-180}=\frac{-2u_{k}^{2}-2600}{-180}
Vydělte obě strany hodnotou -180.
u_{13}=\frac{-2u_{k}^{2}-2600}{-180}
Dělení číslem -180 ruší násobení číslem -180.
u_{13}=\frac{u_{k}^{2}}{90}+\frac{130}{9}
Vydělte číslo -2u_{k}^{2}-2600 číslem -180.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}