Přejít k hlavnímu obsahu
Vyhodnotit
Tick mark Image
Derivovat vzhledem k x
Tick mark Image
Graf

Podobné úlohy z vyhledávání na webu

Sdílet

\frac{1}{x-3}+\frac{2\left(x-3\right)}{x-3}
Pokud chcete sčítat nebo odčítat výrazy, rozšiřte je, aby měly stejné jmenovatele. Vynásobte číslo 2 číslem \frac{x-3}{x-3}.
\frac{1+2\left(x-3\right)}{x-3}
Vzhledem k tomu, že \frac{1}{x-3} a \frac{2\left(x-3\right)}{x-3} mají stejného jmenovatele, můžete je sečíst sečtením jejich čitatelů.
\frac{1+2x-6}{x-3}
Proveďte násobení ve výrazu 1+2\left(x-3\right).
\frac{-5+2x}{x-3}
Slučte stejné členy ve výrazu 1+2x-6.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x-3}+\frac{2\left(x-3\right)}{x-3})
Pokud chcete sčítat nebo odčítat výrazy, rozšiřte je, aby měly stejné jmenovatele. Vynásobte číslo 2 číslem \frac{x-3}{x-3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1+2\left(x-3\right)}{x-3})
Vzhledem k tomu, že \frac{1}{x-3} a \frac{2\left(x-3\right)}{x-3} mají stejného jmenovatele, můžete je sečíst sečtením jejich čitatelů.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1+2x-6}{x-3})
Proveďte násobení ve výrazu 1+2\left(x-3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5+2x}{x-3})
Slučte stejné členy ve výrazu 1+2x-6.
\frac{\left(x^{1}-3\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}-5)-\left(2x^{1}-5\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-3)}{\left(x^{1}-3\right)^{2}}
V případě jakýchkoli dvou diferencovatelných funkcí je derivace podílu dvou funkcí rozdílem mezi násobkem jmenovatele a derivace čitatele a násobkem čitatele a derivace jmenovatele, to celé děleno jmenovatelem na druhou.
\frac{\left(x^{1}-3\right)\times 2x^{1-1}-\left(2x^{1}-5\right)x^{1-1}}{\left(x^{1}-3\right)^{2}}
Derivace mnohočlenu je součtem derivací jeho členů. Derivace konstanty je 0. Derivace členu ax^{n} je nax^{n-1}.
\frac{\left(x^{1}-3\right)\times 2x^{0}-\left(2x^{1}-5\right)x^{0}}{\left(x^{1}-3\right)^{2}}
Proveďte výpočet.
\frac{x^{1}\times 2x^{0}-3\times 2x^{0}-\left(2x^{1}x^{0}-5x^{0}\right)}{\left(x^{1}-3\right)^{2}}
Proveďte roznásobení s využitím distributivnosti.
\frac{2x^{1}-3\times 2x^{0}-\left(2x^{1}-5x^{0}\right)}{\left(x^{1}-3\right)^{2}}
Pokud chcete vynásobit mocniny stejného mocněnce, sečtěte jejich mocnitele.
\frac{2x^{1}-6x^{0}-\left(2x^{1}-5x^{0}\right)}{\left(x^{1}-3\right)^{2}}
Proveďte výpočet.
\frac{2x^{1}-6x^{0}-2x^{1}-\left(-5x^{0}\right)}{\left(x^{1}-3\right)^{2}}
Odstraňte nepotřebné závorky.
\frac{\left(2-2\right)x^{1}+\left(-6-\left(-5\right)\right)x^{0}}{\left(x^{1}-3\right)^{2}}
Slučte stejné členy.
\frac{-x^{0}}{\left(x^{1}-3\right)^{2}}
Odečtěte 2 z 2 a -5 ze -6.
\frac{-x^{0}}{\left(x-3\right)^{2}}
Pro všechny členy t, t^{1}=t.
\frac{-1}{\left(x-3\right)^{2}}
Pro všechny členy t s výjimkou 0, t^{0}=1.