Vyřešte pro: x
x=-2
x=1
Graf
Sdílet
Zkopírováno do schránky
x^{2}+x=1\times 2
Vynásobte obě strany číslem 2, převrácenou hodnotou čísla \frac{1}{2}.
x^{2}+x=2
Vynásobením 1 a 2 získáte 2.
x^{2}+x-2=0
Odečtěte 2 od obou stran.
a+b=1 ab=-2
Chcete-li rovnici vyřešit, součinitel x^{2}+x-2 použijte vzorec x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Pokud chcete najít a a b, nastavte systém, který se má vyřešit.
a=-1 b=2
Vzhledem k tomu, že výraz ab je záporný, mají hodnoty a a b opačné znaménko. Vzhledem k tomu, že výraz a+b je kladný, má kladné číslo vyšší absolutní hodnotu než záporné číslo. Jediná taková dvojice představuje systémové řešení.
\left(x-1\right)\left(x+2\right)
Přepište rozložený výraz \left(x+a\right)\left(x+b\right) pomocí získaných hodnot.
x=1 x=-2
Chcete-li najít řešení rovnic, vyřešte x-1=0 a x+2=0.
x^{2}+x=1\times 2
Vynásobte obě strany číslem 2, převrácenou hodnotou čísla \frac{1}{2}.
x^{2}+x=2
Vynásobením 1 a 2 získáte 2.
x^{2}+x-2=0
Odečtěte 2 od obou stran.
a+b=1 ab=1\left(-2\right)=-2
Chcete-li rovnici vyřešit, koeficient na levé straně seskupte. Nejprve je třeba přepsát levou stranu jako x^{2}+ax+bx-2. Pokud chcete najít a a b, nastavte systém, který se má vyřešit.
a=-1 b=2
Vzhledem k tomu, že výraz ab je záporný, mají hodnoty a a b opačné znaménko. Vzhledem k tomu, že výraz a+b je kladný, má kladné číslo vyšší absolutní hodnotu než záporné číslo. Jediná taková dvojice představuje systémové řešení.
\left(x^{2}-x\right)+\left(2x-2\right)
Zapište x^{2}+x-2 jako: \left(x^{2}-x\right)+\left(2x-2\right).
x\left(x-1\right)+2\left(x-1\right)
Koeficient x v prvním a 2 ve druhé skupině.
\left(x-1\right)\left(x+2\right)
Vytkněte společný člen x-1 s využitím distributivnosti.
x=1 x=-2
Chcete-li najít řešení rovnic, vyřešte x-1=0 a x+2=0.
x^{2}+x=1\times 2
Vynásobte obě strany číslem 2, převrácenou hodnotou čísla \frac{1}{2}.
x^{2}+x=2
Vynásobením 1 a 2 získáte 2.
x^{2}+x-2=0
Odečtěte 2 od obou stran.
x=\frac{-1±\sqrt{1^{2}-4\left(-2\right)}}{2}
Tato rovnice má standardní tvar: ax^{2}+bx+c=0. Do kvadratického vzorce, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, dosaďte 1 za a, 1 za b a -2 za c.
x=\frac{-1±\sqrt{1-4\left(-2\right)}}{2}
Umocněte číslo 1 na druhou.
x=\frac{-1±\sqrt{1+8}}{2}
Vynásobte číslo -4 číslem -2.
x=\frac{-1±\sqrt{9}}{2}
Přidejte uživatele 1 do skupiny 8.
x=\frac{-1±3}{2}
Vypočítejte druhou odmocninu čísla 9.
x=\frac{2}{2}
Teď vyřešte rovnici x=\frac{-1±3}{2}, když ± je plus. Přidejte uživatele -1 do skupiny 3.
x=1
Vydělte číslo 2 číslem 2.
x=-\frac{4}{2}
Teď vyřešte rovnici x=\frac{-1±3}{2}, když ± je minus. Odečtěte číslo 3 od čísla -1.
x=-2
Vydělte číslo -4 číslem 2.
x=1 x=-2
Rovnice je teď vyřešená.
x^{2}+x=1\times 2
Vynásobte obě strany číslem 2, převrácenou hodnotou čísla \frac{1}{2}.
x^{2}+x=2
Vynásobením 1 a 2 získáte 2.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=2+\left(\frac{1}{2}\right)^{2}
Vydělte 1, koeficient x termínu 2 k získání \frac{1}{2}. Potom přidejte čtvereček \frac{1}{2} na obě strany rovnice. Tímto krokem bude levá strana rovnice ve výrazu o dokonalý čtverec.
x^{2}+x+\frac{1}{4}=2+\frac{1}{4}
Umocněte zlomek \frac{1}{2} na druhou tak, že umocníte na druhou čitatele i jmenovatele zlomku.
x^{2}+x+\frac{1}{4}=\frac{9}{4}
Přidejte uživatele 2 do skupiny \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{9}{4}
Činitel x^{2}+x+\frac{1}{4}. Obecně platí, že pokud je x^{2}+bx+cdokonalý čtverec, dá se vždy rozložit jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Vypočítejte druhou odmocninu obou stran rovnice.
x+\frac{1}{2}=\frac{3}{2} x+\frac{1}{2}=-\frac{3}{2}
Proveďte zjednodušení.
x=1 x=-2
Odečtěte hodnotu \frac{1}{2} od obou stran rovnice.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}