Přejít k hlavnímu obsahu
Vyřešte pro: p (complex solution)
Tick mark Image
Vyřešte pro: p
Tick mark Image
Vyřešte pro: a (complex solution)
Tick mark Image

Podobné úlohy z vyhledávání na webu

Sdílet

\left(49-x^{2}\right)parax=-13é\left(-x+7\right)
Vynásobte obě strany rovnice hodnotou -x+7.
\left(49-x^{2}\right)pa^{2}rx=-13é\left(-x+7\right)
Vynásobením a a a získáte a^{2}.
\left(49p-x^{2}p\right)a^{2}rx=-13é\left(-x+7\right)
S využitím distributivnosti vynásobte číslo 49-x^{2} číslem p.
\left(49pa^{2}-x^{2}pa^{2}\right)rx=-13é\left(-x+7\right)
S využitím distributivnosti vynásobte číslo 49p-x^{2}p číslem a^{2}.
\left(49pa^{2}r-x^{2}pa^{2}r\right)x=-13é\left(-x+7\right)
S využitím distributivnosti vynásobte číslo 49pa^{2}-x^{2}pa^{2} číslem r.
49pa^{2}rx-pa^{2}rx^{3}=-13é\left(-x+7\right)
S využitím distributivnosti vynásobte číslo 49pa^{2}r-x^{2}pa^{2}r číslem x.
49pa^{2}rx-pa^{2}rx^{3}=13éx-91é
S využitím distributivnosti vynásobte číslo -13é číslem -x+7.
\left(49a^{2}rx-a^{2}rx^{3}\right)p=13éx-91é
Slučte všechny členy obsahující p.
\left(49rxa^{2}-ra^{2}x^{3}\right)p=13xé-91é
Rovnice je ve standardním tvaru.
\frac{\left(49rxa^{2}-ra^{2}x^{3}\right)p}{49rxa^{2}-ra^{2}x^{3}}=\frac{13é\left(x-7\right)}{49rxa^{2}-ra^{2}x^{3}}
Vydělte obě strany hodnotou 49a^{2}rx-a^{2}rx^{3}.
p=\frac{13é\left(x-7\right)}{49rxa^{2}-ra^{2}x^{3}}
Dělení číslem 49a^{2}rx-a^{2}rx^{3} ruší násobení číslem 49a^{2}rx-a^{2}rx^{3}.
p=-\frac{13é}{rx\left(x+7\right)a^{2}}
Vydělte číslo 13é\left(-7+x\right) číslem 49a^{2}rx-a^{2}rx^{3}.
\left(49-x^{2}\right)parax=-13é\left(-x+7\right)
Vynásobte obě strany rovnice hodnotou -x+7.
\left(49-x^{2}\right)pa^{2}rx=-13é\left(-x+7\right)
Vynásobením a a a získáte a^{2}.
\left(49p-x^{2}p\right)a^{2}rx=-13é\left(-x+7\right)
S využitím distributivnosti vynásobte číslo 49-x^{2} číslem p.
\left(49pa^{2}-x^{2}pa^{2}\right)rx=-13é\left(-x+7\right)
S využitím distributivnosti vynásobte číslo 49p-x^{2}p číslem a^{2}.
\left(49pa^{2}r-x^{2}pa^{2}r\right)x=-13é\left(-x+7\right)
S využitím distributivnosti vynásobte číslo 49pa^{2}-x^{2}pa^{2} číslem r.
49pa^{2}rx-pa^{2}rx^{3}=-13é\left(-x+7\right)
S využitím distributivnosti vynásobte číslo 49pa^{2}r-x^{2}pa^{2}r číslem x.
49pa^{2}rx-pa^{2}rx^{3}=13éx-91é
S využitím distributivnosti vynásobte číslo -13é číslem -x+7.
\left(49a^{2}rx-a^{2}rx^{3}\right)p=13éx-91é
Slučte všechny členy obsahující p.
\left(49rxa^{2}-ra^{2}x^{3}\right)p=13xé-91é
Rovnice je ve standardním tvaru.
\frac{\left(49rxa^{2}-ra^{2}x^{3}\right)p}{49rxa^{2}-ra^{2}x^{3}}=\frac{13é\left(x-7\right)}{49rxa^{2}-ra^{2}x^{3}}
Vydělte obě strany hodnotou 49a^{2}rx-a^{2}rx^{3}.
p=\frac{13é\left(x-7\right)}{49rxa^{2}-ra^{2}x^{3}}
Dělení číslem 49a^{2}rx-a^{2}rx^{3} ruší násobení číslem 49a^{2}rx-a^{2}rx^{3}.
p=-\frac{13é}{rx\left(x+7\right)a^{2}}
Vydělte číslo 13é\left(-7+x\right) číslem 49a^{2}rx-a^{2}rx^{3}.