Vyhodnotit
9
Rozložit
3^{2}
Sdílet
Zkopírováno do schránky
\frac{\left(\sqrt{3}\right)^{2}+4\times \left(\frac{1}{\sqrt{2}}\right)^{2}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Vydělením čísla číslem 1 dostaneme číslo samotné.
\frac{3+4\times \left(\frac{1}{\sqrt{2}}\right)^{2}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Mocnina hodnoty \sqrt{3} je 3.
\frac{3+4\times \left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Převeďte jmenovatele \frac{1}{\sqrt{2}} vynásobením čitatele a jmenovatele \sqrt{2}.
\frac{3+4\times \left(\frac{\sqrt{2}}{2}\right)^{2}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Mocnina hodnoty \sqrt{2} je 2.
\frac{3+4\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Pokud chcete výraz \frac{\sqrt{2}}{2} umocnit, umocněte čitatel i jmenovatel. Pak teprve proveďte operaci dělení.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Vyjádřete 4\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} jako jeden zlomek.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \left(\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Převeďte jmenovatele \frac{2}{\sqrt{3}} vynásobením čitatele a jmenovatele \sqrt{3}.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \left(\frac{2\sqrt{3}}{3}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Mocnina hodnoty \sqrt{3} je 3.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Pokud chcete výraz \frac{2\sqrt{3}}{3} umocnit, umocněte čitatel i jmenovatel. Pak teprve proveďte operaci dělení.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{3\times \left(2\sqrt{3}\right)^{2}}{3^{2}}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Vyjádřete 3\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}} jako jeden zlomek.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(2\sqrt{3}\right)^{2}}{3}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Vykraťte 3 v čitateli a jmenovateli.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(2\sqrt{3}\right)^{2}}{3}+5\times 0}{2+2-\left(\sqrt{3}\right)^{2}}
Výpočtem 0 na 2 získáte 0.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(2\sqrt{3}\right)^{2}}{3}+0}{2+2-\left(\sqrt{3}\right)^{2}}
Vynásobením 5 a 0 získáte 0.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(2\sqrt{3}\right)^{2}}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
Sečtením 3 a 0 získáte 3.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{2^{2}\left(\sqrt{3}\right)^{2}}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
Roznásobte \left(2\sqrt{3}\right)^{2}.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
Výpočtem 2 na 2 získáte 4.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{4\times 3}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
Mocnina hodnoty \sqrt{3} je 3.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{12}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
Vynásobením 4 a 3 získáte 12.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+4}{2+2-\left(\sqrt{3}\right)^{2}}
Vydělte číslo 12 číslem 3 a dostanete 4.
\frac{7+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
Sečtením 3 a 4 získáte 7.
\frac{7+\frac{4\times 2}{2^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
Mocnina hodnoty \sqrt{2} je 2.
\frac{7+\frac{8}{2^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
Vynásobením 4 a 2 získáte 8.
\frac{7+\frac{8}{4}}{2+2-\left(\sqrt{3}\right)^{2}}
Výpočtem 2 na 2 získáte 4.
\frac{7+2}{2+2-\left(\sqrt{3}\right)^{2}}
Vydělte číslo 8 číslem 4 a dostanete 2.
\frac{9}{2+2-\left(\sqrt{3}\right)^{2}}
Sečtením 7 a 2 získáte 9.
\frac{9}{4-\left(\sqrt{3}\right)^{2}}
Sečtením 2 a 2 získáte 4.
\frac{9}{4-3}
Mocnina hodnoty \sqrt{3} je 3.
\frac{9}{1}
Odečtěte 3 od 4 a dostanete 1.
9
Vydělením čísla číslem 1 dostaneme číslo samotné.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}