Vyhodnotit
-4
Rozložit
-4
Sdílet
Zkopírováno do schránky
\frac{\frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
Pokud chcete sčítat nebo odčítat výrazy, rozšiřte je, aby měly stejné jmenovatele. Nejmenší společný násobek pro x+y a x-y je \left(x+y\right)\left(x-y\right). Vynásobte číslo \frac{x-y}{x+y} číslem \frac{x-y}{x-y}. Vynásobte číslo \frac{x+y}{x-y} číslem \frac{x+y}{x+y}.
\frac{\frac{\left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
Vzhledem k tomu, že \frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} a \frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)} mají stejného jmenovatele, můžete je odečíst odečtením jejich čitatelů.
\frac{\frac{x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
Proveďte násobení ve výrazu \left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right).
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
Slučte stejné členy ve výrazu x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}
Rozložte x^{2}-y^{2} na součin.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}
Pokud chcete sčítat nebo odčítat výrazy, rozšiřte je, aby měly stejné jmenovatele. Vynásobte číslo 1 číslem \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{\left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right)}{\left(x+y\right)\left(x-y\right)}}
Vzhledem k tomu, že \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} a \frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)} mají stejného jmenovatele, můžete je odečíst odečtením jejich čitatelů.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}}{\left(x+y\right)\left(x-y\right)}}
Proveďte násobení ve výrazu \left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right).
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{xy}{\left(x+y\right)\left(x-y\right)}}
Slučte stejné členy ve výrazu x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}.
\frac{-4xy\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)xy}
Vydělte číslo \frac{-4xy}{\left(x+y\right)\left(x-y\right)} zlomkem \frac{xy}{\left(x+y\right)\left(x-y\right)} tak, že číslo \frac{-4xy}{\left(x+y\right)\left(x-y\right)} vynásobíte převrácenou hodnotou zlomku \frac{xy}{\left(x+y\right)\left(x-y\right)}.
-4
Vykraťte xy\left(x+y\right)\left(x-y\right) v čitateli a jmenovateli.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}