Vyhodnotit
-92a
Roznásobit
-92a
Sdílet
Zkopírováno do schránky
\frac{368\left(\frac{3}{28}a^{3}b\left(-\frac{7}{4}\right)b-\left(-\frac{1}{8}a^{3}b\times 2b\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Pokud chcete vynásobit mocniny stejného mocněnce, sečtěte jejich mocnitele. Sečtením 2 a 1 získáte 3.
\frac{368\left(\frac{3}{28}a^{3}b^{2}\left(-\frac{7}{4}\right)-\left(-\frac{1}{8}a^{3}b\times 2b\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Vynásobením b a b získáte b^{2}.
\frac{368\left(\frac{3}{28}a^{3}b^{2}\left(-\frac{7}{4}\right)-\left(-\frac{1}{8}a^{3}b^{2}\times 2\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Vynásobením b a b získáte b^{2}.
\frac{368\left(-\frac{3}{16}a^{3}b^{2}-\left(-\frac{1}{8}a^{3}b^{2}\times 2\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Vynásobením \frac{3}{28} a -\frac{7}{4} získáte -\frac{3}{16}.
\frac{368\left(-\frac{3}{16}a^{3}b^{2}-\left(-\frac{1}{4}a^{3}b^{2}\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Vynásobením -\frac{1}{8} a 2 získáte -\frac{1}{4}.
\frac{368\left(-\frac{3}{16}a^{3}b^{2}+\frac{1}{4}a^{3}b^{2}\right)}{-\frac{1}{4}a^{2}b^{2}}
Opakem -\frac{1}{4}a^{3}b^{2} je \frac{1}{4}a^{3}b^{2}.
\frac{368\times \frac{1}{16}a^{3}b^{2}}{-\frac{1}{4}a^{2}b^{2}}
Sloučením -\frac{3}{16}a^{3}b^{2} a \frac{1}{4}a^{3}b^{2} získáte \frac{1}{16}a^{3}b^{2}.
\frac{23a^{3}b^{2}}{-\frac{1}{4}a^{2}b^{2}}
Vynásobením 368 a \frac{1}{16} získáte 23.
\frac{23a}{-\frac{1}{4}}
Vykraťte a^{2}b^{2} v čitateli a jmenovateli.
\frac{23a\times 4}{-1}
Vydělte číslo 23a zlomkem -\frac{1}{4} tak, že číslo 23a vynásobíte převrácenou hodnotou zlomku -\frac{1}{4}.
\frac{92a}{-1}
Vynásobením 23 a 4 získáte 92.
-92a
Výsledkem vydělení jakékoli hodnoty hodnotou -1 je hodnota opačná.
\frac{368\left(\frac{3}{28}a^{3}b\left(-\frac{7}{4}\right)b-\left(-\frac{1}{8}a^{3}b\times 2b\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Pokud chcete vynásobit mocniny stejného mocněnce, sečtěte jejich mocnitele. Sečtením 2 a 1 získáte 3.
\frac{368\left(\frac{3}{28}a^{3}b^{2}\left(-\frac{7}{4}\right)-\left(-\frac{1}{8}a^{3}b\times 2b\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Vynásobením b a b získáte b^{2}.
\frac{368\left(\frac{3}{28}a^{3}b^{2}\left(-\frac{7}{4}\right)-\left(-\frac{1}{8}a^{3}b^{2}\times 2\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Vynásobením b a b získáte b^{2}.
\frac{368\left(-\frac{3}{16}a^{3}b^{2}-\left(-\frac{1}{8}a^{3}b^{2}\times 2\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Vynásobením \frac{3}{28} a -\frac{7}{4} získáte -\frac{3}{16}.
\frac{368\left(-\frac{3}{16}a^{3}b^{2}-\left(-\frac{1}{4}a^{3}b^{2}\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Vynásobením -\frac{1}{8} a 2 získáte -\frac{1}{4}.
\frac{368\left(-\frac{3}{16}a^{3}b^{2}+\frac{1}{4}a^{3}b^{2}\right)}{-\frac{1}{4}a^{2}b^{2}}
Opakem -\frac{1}{4}a^{3}b^{2} je \frac{1}{4}a^{3}b^{2}.
\frac{368\times \frac{1}{16}a^{3}b^{2}}{-\frac{1}{4}a^{2}b^{2}}
Sloučením -\frac{3}{16}a^{3}b^{2} a \frac{1}{4}a^{3}b^{2} získáte \frac{1}{16}a^{3}b^{2}.
\frac{23a^{3}b^{2}}{-\frac{1}{4}a^{2}b^{2}}
Vynásobením 368 a \frac{1}{16} získáte 23.
\frac{23a}{-\frac{1}{4}}
Vykraťte a^{2}b^{2} v čitateli a jmenovateli.
\frac{23a\times 4}{-1}
Vydělte číslo 23a zlomkem -\frac{1}{4} tak, že číslo 23a vynásobíte převrácenou hodnotou zlomku -\frac{1}{4}.
\frac{92a}{-1}
Vynásobením 23 a 4 získáte 92.
-92a
Výsledkem vydělení jakékoli hodnoty hodnotou -1 je hodnota opačná.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}