Vyhodnotit
-28x^{2}+142x-\frac{391}{4}
Roznásobit
-28x^{2}+142x-\frac{391}{4}
Graf
Sdílet
Zkopírováno do schránky
\left(6x-\frac{3}{2}\right)^{2}-\left(8\left(x-\frac{5}{4}\right)\right)^{2}
S využitím distributivnosti vynásobte číslo 6 číslem x-\frac{1}{4}.
36x^{2}-18x+\frac{9}{4}-\left(8\left(x-\frac{5}{4}\right)\right)^{2}
Rozviňte výraz \left(6x-\frac{3}{2}\right)^{2} podle binomické věty \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
36x^{2}-18x+\frac{9}{4}-\left(8x-10\right)^{2}
S využitím distributivnosti vynásobte číslo 8 číslem x-\frac{5}{4}.
36x^{2}-18x+\frac{9}{4}-\left(64x^{2}-160x+100\right)
Rozviňte výraz \left(8x-10\right)^{2} podle binomické věty \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
36x^{2}-18x+\frac{9}{4}-64x^{2}+160x-100
Pokud chcete najít opačnou hodnotu k 64x^{2}-160x+100, najděte opačnou hodnotu k jednotlivým členům.
-28x^{2}-18x+\frac{9}{4}+160x-100
Sloučením 36x^{2} a -64x^{2} získáte -28x^{2}.
-28x^{2}+142x+\frac{9}{4}-100
Sloučením -18x a 160x získáte 142x.
-28x^{2}+142x-\frac{391}{4}
Odečtěte 100 od \frac{9}{4} a dostanete -\frac{391}{4}.
\left(6x-\frac{3}{2}\right)^{2}-\left(8\left(x-\frac{5}{4}\right)\right)^{2}
S využitím distributivnosti vynásobte číslo 6 číslem x-\frac{1}{4}.
36x^{2}-18x+\frac{9}{4}-\left(8\left(x-\frac{5}{4}\right)\right)^{2}
Rozviňte výraz \left(6x-\frac{3}{2}\right)^{2} podle binomické věty \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
36x^{2}-18x+\frac{9}{4}-\left(8x-10\right)^{2}
S využitím distributivnosti vynásobte číslo 8 číslem x-\frac{5}{4}.
36x^{2}-18x+\frac{9}{4}-\left(64x^{2}-160x+100\right)
Rozviňte výraz \left(8x-10\right)^{2} podle binomické věty \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
36x^{2}-18x+\frac{9}{4}-64x^{2}+160x-100
Pokud chcete najít opačnou hodnotu k 64x^{2}-160x+100, najděte opačnou hodnotu k jednotlivým členům.
-28x^{2}-18x+\frac{9}{4}+160x-100
Sloučením 36x^{2} a -64x^{2} získáte -28x^{2}.
-28x^{2}+142x+\frac{9}{4}-100
Sloučením -18x a 160x získáte 142x.
-28x^{2}+142x-\frac{391}{4}
Odečtěte 100 od \frac{9}{4} a dostanete -\frac{391}{4}.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}