Preskoči na glavni sadržaj
Microsoft
|
Math Solver
Reši
Vježbati
Igrati
Teme
pre-algebra
Značiti
Način
Najveći zajednički faktor
Najmanje zajednički višekratnik
Poredak operacija
Razlomke
Mješovite frakcije
Faktorizacija premijera
Eksponenti
Korijeni
Algebra
Kombinuj kao termine
Rješavanje za varijablu
Faktor
Proširiti
Procjena razlomaka
linearne jednacine
kvadratne jednacine
nejednakosti
Sistemi jednačina
matrice
trigonometrija
Pojednostavi
Procijeni
Grafikoni
Rješavanje jednačina
Kalkulus
Derivati
Integrali
Granice
Unosi algebre
Trigonometrija ulaza
Unosi kalkulusa
Unosi matrice
Reši
Vježbati
Igrati
Teme
pre-algebra
Značiti
Način
Najveći zajednički faktor
Najmanje zajednički višekratnik
Poredak operacija
Razlomke
Mješovite frakcije
Faktorizacija premijera
Eksponenti
Korijeni
Algebra
Kombinuj kao termine
Rješavanje za varijablu
Faktor
Proširiti
Procjena razlomaka
linearne jednacine
kvadratne jednacine
nejednakosti
Sistemi jednačina
matrice
trigonometrija
Pojednostavi
Procijeni
Grafikoni
Rješavanje jednačina
Kalkulus
Derivati
Integrali
Granice
Unosi algebre
Trigonometrija ulaza
Unosi kalkulusa
Unosi matrice
Osnovne
Algebra
trigonometrija
racun
statistika
matrice
Karaktera
Riješite za x
x=\pi n_{1}+\frac{\pi }{4}
n_{1}\in \mathrm{Z}
Graf
Nacrtaj grafik obje strane u 2D-u
Grafik u 2D-u
Kviz
Trigonometry
\sin ( x ) = \cos ( x )
Slični problemi iz web pretrage
How to solve equations like 2 \sin(x) = \cos(x)
https://math.stackexchange.com/questions/1476944/how-to-solve-equations-like-2-sinx-cosx/1476973
One way can be using tan\frac x2=t so sin x=\frac{2t}{1+t^2} and cos x=\frac{1-t^2}{1+t^2}. Here 2sin x= cos x implies t^2+4t-1=0 from wich tan \frac x2=2\pm\sqrt{5}.Hence the answer of ...
How do you show that the equation \displaystyle{1}-{\sin{{x}}}={\cos{{x}}} is not an identity?
https://socratic.org/questions/how-do-you-show-that-the-equation-1-sinx-cosx-is-not-an-identity
Bdub Nov 12, 2016 Pick a value for x like \displaystyle\frac{\pi}{{3}} and plug it in to both side to show that they don't equal each other and therefore not an identity
How do you solve \displaystyle{1}+{\sin{{\left({x}\right)}}}={\cos{{\left({x}\right)}}} ?
https://socratic.org/questions/how-do-you-solve-1-sin-x-cos-x
\displaystyle{x}={0} Explanation: \displaystyle{1}+{\sin{{\left({x}\right)}}}={\cos{{\left({x}\right)}}}{\quad\text{or}\quad}{\cos{{x}}}-{\sin{{x}}}={1} . Squaring both sides we get \displaystyle{\left({\cos{{x}}}-{\sin{{x}}}\right)}^{{2}}={1}{\quad\text{or}\quad}{{\cos}^{{2}}{x}}+{{\sin}^{{2}}{x}}-{2}{\sin{{x}}}{\cos{{x}}}={1}{\quad\text{or}\quad}{1}-{\sin{{2}}}{x}={1}{\quad\text{or}\quad}{\sin{{2}}}{x}={0}={\sin{{0}}}; ...
Trigonometric equation \sin2x=\cos x
https://math.stackexchange.com/questions/3008492/trigonometric-equation-sin2x-cos-x
As @Nicholas Stull hinted, you lost solutions by not making sure that you were not dividing by zero. As @Winther pointed out, you can avoid this error by factoring. As @Nicholas Stull pointed out, ...
Is there a deeper understanding of the derivative of sin(x) = cos(x)?
https://math.stackexchange.com/q/2454114
Apropos "deeper way": 1) f(x) = f(-x), even fct. Examples: y=x^2, y=cos(x) f'(x) = -f'(-x), chain rule, odd fct. 2) f(x)=-f(-x), odd fct. Examples: y=x^3, y=sin(x). f'(x) = f'(-x), ...
Maximum area of a rectangle inscribed in the cos(x) function
https://math.stackexchange.com/q/2212333
Equations like x= \cos x or x=\cot x generally don't have algebraic solutions. As such, we would first want to note that such an x exists (e.g., by the Intermediate Value Theorem) and then use ...
Više Stavke
Dijeliti
Kopirati
Kopirano u clipboard
Slični problemi
\tan ( x )
\sec ( x )
\sin ( x ) = \cos ( x )
\cot ( x )
\cos ( x )
\csc ( x )
Nazad na vrh