تجاوز إلى المحتوى الرئيسي
Microsoft
|
Math Solver
الحل
تدريب
لعب
الموضوعات
مبادئ الجبر
يعني
وضع
العامل المشترك الأكبر
المضاعفات المشتركة الأقل
ترتيب العمليات
الكسور
الكسور المختلطة
عامل رئيسي
الأسس
الجذور
الجبر
الجمع بين المصطلحات المتشابهة
حل لمتغير
المعامل
توسيع
احسب الكسور
المعادلات الخطية
المعادلات التربيعية
التباين
نظم المعادلات
المصفوفات
حساب المثلثات
تبسيط
تقييم
الرسومات البيانية
حل المعادلات
حساب التفاضل والتكامل
المشتقات
التكاملات
النهايات
مدخلات الجبر
مدخلات علم المثلثات
مدخلات حساب التفاضل والتكامل
مدخلات المصفوفة
الحل
تدريب
لعب
الموضوعات
مبادئ الجبر
يعني
وضع
العامل المشترك الأكبر
المضاعفات المشتركة الأقل
ترتيب العمليات
الكسور
الكسور المختلطة
عامل رئيسي
الأسس
الجذور
الجبر
الجمع بين المصطلحات المتشابهة
حل لمتغير
المعامل
توسيع
احسب الكسور
المعادلات الخطية
المعادلات التربيعية
التباين
نظم المعادلات
المصفوفات
حساب المثلثات
تبسيط
تقييم
الرسومات البيانية
حل المعادلات
حساب التفاضل والتكامل
المشتقات
التكاملات
النهايات
مدخلات الجبر
مدخلات علم المثلثات
مدخلات حساب التفاضل والتكامل
مدخلات المصفوفة
الاساسيه
الجبر
حساب المثلثات
حساب التفاضل والتكامل
الإحصائيات
المصفوفات
الاحرف
حل مسائل x
x=\pi n_{1}+\frac{\pi }{4}
n_{1}\in \mathrm{Z}
رسم بياني
رسم بياني للطرفين بتأثير ثنائي الأبعاد
رسم بياني بتأثير ثنائي الأبعاد
اختبار
Trigonometry
\sin ( x ) = \cos ( x )
مسائل مماثلة من البحث في الويب
How to solve equations like 2 \sin(x) = \cos(x)
https://math.stackexchange.com/questions/1476944/how-to-solve-equations-like-2-sinx-cosx/1476973
One way can be using tan\frac x2=t so sin x=\frac{2t}{1+t^2} and cos x=\frac{1-t^2}{1+t^2}. Here 2sin x= cos x implies t^2+4t-1=0 from wich tan \frac x2=2\pm\sqrt{5}.Hence the answer of ...
How do you show that the equation \displaystyle{1}-{\sin{{x}}}={\cos{{x}}} is not an identity?
https://socratic.org/questions/how-do-you-show-that-the-equation-1-sinx-cosx-is-not-an-identity
Bdub Nov 12, 2016 Pick a value for x like \displaystyle\frac{\pi}{{3}} and plug it in to both side to show that they don't equal each other and therefore not an identity
How do you solve \displaystyle{1}+{\sin{{\left({x}\right)}}}={\cos{{\left({x}\right)}}} ?
https://socratic.org/questions/how-do-you-solve-1-sin-x-cos-x
\displaystyle{x}={0} Explanation: \displaystyle{1}+{\sin{{\left({x}\right)}}}={\cos{{\left({x}\right)}}}{\quad\text{or}\quad}{\cos{{x}}}-{\sin{{x}}}={1} . Squaring both sides we get \displaystyle{\left({\cos{{x}}}-{\sin{{x}}}\right)}^{{2}}={1}{\quad\text{or}\quad}{{\cos}^{{2}}{x}}+{{\sin}^{{2}}{x}}-{2}{\sin{{x}}}{\cos{{x}}}={1}{\quad\text{or}\quad}{1}-{\sin{{2}}}{x}={1}{\quad\text{or}\quad}{\sin{{2}}}{x}={0}={\sin{{0}}}; ...
Trigonometric equation \sin2x=\cos x
https://math.stackexchange.com/questions/3008492/trigonometric-equation-sin2x-cos-x
As @Nicholas Stull hinted, you lost solutions by not making sure that you were not dividing by zero. As @Winther pointed out, you can avoid this error by factoring. As @Nicholas Stull pointed out, ...
Is there a deeper understanding of the derivative of sin(x) = cos(x)?
https://math.stackexchange.com/q/2454114
Apropos "deeper way": 1) f(x) = f(-x), even fct. Examples: y=x^2, y=cos(x) f'(x) = -f'(-x), chain rule, odd fct. 2) f(x)=-f(-x), odd fct. Examples: y=x^3, y=sin(x). f'(x) = f'(-x), ...
Maximum area of a rectangle inscribed in the cos(x) function
https://math.stackexchange.com/q/2212333
Equations like x= \cos x or x=\cot x generally don't have algebraic solutions. As such, we would first want to note that such an x exists (e.g., by the Intermediate Value Theorem) and then use ...
المزيد من العناصر
مشاركة
نسخ
تم النسخ للحافظة
مشاكل مشابهة
\tan ( x )
\sec ( x )
\sin ( x ) = \cos ( x )
\cot ( x )
\cos ( x )
\csc ( x )
الرجوع لأعلى