حل مسائل m
\left\{\begin{matrix}m=\frac{z}{\sqrt{y^{2}-2x}}\text{, }&x<\frac{y^{2}}{2}\\m\in \mathrm{R}\text{, }&x=\frac{y^{2}}{2}\text{ and }z=0\end{matrix}\right.
حل مسائل x
\left\{\begin{matrix}x=\frac{y^{2}-\left(\frac{z}{m}\right)^{2}}{2}\text{, }&\left(z\geq 0\text{ and }m>0\right)\text{ or }\left(z\leq 0\text{ and }m<0\right)\\x\leq \frac{y^{2}}{2}\text{, }&z=0\text{ and }m=0\end{matrix}\right.
مشاركة
تم النسخ للحافظة
m\sqrt{y^{2}-2x}=z
قم بتبديل الطرفين بحيث تكون كل الحدود المتغيرة على اليسار.
\sqrt{y^{2}-2x}m=z
المعادلة بالصيغة العامة.
\frac{\sqrt{y^{2}-2x}m}{\sqrt{y^{2}-2x}}=\frac{z}{\sqrt{y^{2}-2x}}
قسمة طرفي المعادلة على \sqrt{y^{2}-2x}.
m=\frac{z}{\sqrt{y^{2}-2x}}
القسمة على \sqrt{y^{2}-2x} تؤدي إلى التراجع عن الضرب في \sqrt{y^{2}-2x}.
m\sqrt{y^{2}-2x}=z
قم بتبديل الطرفين بحيث تكون كل الحدود المتغيرة على اليسار.
\frac{m\sqrt{-2x+y^{2}}}{m}=\frac{z}{m}
قسمة طرفي المعادلة على m.
\sqrt{-2x+y^{2}}=\frac{z}{m}
القسمة على m تؤدي إلى التراجع عن الضرب في m.
-2x+y^{2}=\frac{z^{2}}{m^{2}}
تربيع طرفي المعادلة.
-2x+y^{2}-y^{2}=\frac{z^{2}}{m^{2}}-y^{2}
اطرح y^{2} من طرفي المعادلة.
-2x=\frac{z^{2}}{m^{2}}-y^{2}
ناتج طرح y^{2} من نفسه يساوي 0.
-2x=-y^{2}+\frac{z^{2}}{m^{2}}
اطرح y^{2} من \frac{z^{2}}{m^{2}}.
\frac{-2x}{-2}=\frac{-y^{2}+\frac{z^{2}}{m^{2}}}{-2}
قسمة طرفي المعادلة على -2.
x=\frac{-y^{2}+\frac{z^{2}}{m^{2}}}{-2}
القسمة على -2 تؤدي إلى التراجع عن الضرب في -2.
x=\frac{y^{2}}{2}-\frac{z^{2}}{2m^{2}}
اقسم -y^{2}+\frac{z^{2}}{m^{2}} على -2.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}