حل مسائل x
\left\{\begin{matrix}x=-\frac{8\left(72+4z-y\right)}{8-31y}\text{, }&y\neq \frac{8}{31}\\x\in \mathrm{R}\text{, }&y=\frac{8}{31}\text{ and }z=-\frac{556}{31}\end{matrix}\right.
حل مسائل y
\left\{\begin{matrix}y=\frac{8\left(x+4z+72\right)}{31x+8}\text{, }&x\neq -\frac{8}{31}\\y\in \mathrm{R}\text{, }&x=-\frac{8}{31}\text{ and }z=-\frac{556}{31}\end{matrix}\right.
مشاركة
تم النسخ للحافظة
y=x+72-\frac{31}{8}xy+4z
اقسم 93x على 24 لتحصل على \frac{31}{8}x.
x+72-\frac{31}{8}xy+4z=y
قم بتبديل الطرفين بحيث تكون كل الحدود المتغيرة على اليسار.
x-\frac{31}{8}xy+4z=y-72
اطرح 72 من الطرفين.
x-\frac{31}{8}xy=y-72-4z
اطرح 4z من الطرفين.
\left(1-\frac{31}{8}y\right)x=y-72-4z
اجمع كل الحدود التي تحتوي على x.
\left(-\frac{31y}{8}+1\right)x=y-4z-72
المعادلة بالصيغة العامة.
\frac{\left(-\frac{31y}{8}+1\right)x}{-\frac{31y}{8}+1}=\frac{y-4z-72}{-\frac{31y}{8}+1}
قسمة طرفي المعادلة على 1-\frac{31}{8}y.
x=\frac{y-4z-72}{-\frac{31y}{8}+1}
القسمة على 1-\frac{31}{8}y تؤدي إلى التراجع عن الضرب في 1-\frac{31}{8}y.
x=\frac{8\left(y-4z-72\right)}{8-31y}
اقسم y-72-4z على 1-\frac{31}{8}y.
y=x+72-\frac{31}{8}xy+4z
اقسم 93x على 24 لتحصل على \frac{31}{8}x.
y+\frac{31}{8}xy=x+72+4z
إضافة \frac{31}{8}xy لكلا الجانبين.
\left(1+\frac{31}{8}x\right)y=x+72+4z
اجمع كل الحدود التي تحتوي على y.
\left(\frac{31x}{8}+1\right)y=x+4z+72
المعادلة بالصيغة العامة.
\frac{\left(\frac{31x}{8}+1\right)y}{\frac{31x}{8}+1}=\frac{x+4z+72}{\frac{31x}{8}+1}
قسمة طرفي المعادلة على 1+\frac{31}{8}x.
y=\frac{x+4z+72}{\frac{31x}{8}+1}
القسمة على 1+\frac{31}{8}x تؤدي إلى التراجع عن الضرب في 1+\frac{31}{8}x.
y=\frac{8\left(x+4z+72\right)}{31x+8}
اقسم x+72+4z على 1+\frac{31}{8}x.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}