تفاضل w.r.t. y
\frac{14}{15\sqrt[15]{y}}
تقييم
y^{\frac{14}{15}}
رسم بياني
مشاركة
تم النسخ للحافظة
\sqrt[3]{y}\frac{\mathrm{d}}{\mathrm{d}y}(y^{\frac{3}{5}})+y^{\frac{3}{5}}\frac{\mathrm{d}}{\mathrm{d}y}(\sqrt[3]{y})
بالنسبة لأي دالتين قابلتين للمفاضلة، يكون مشتق حاصل ضرب الدالتين هو ضرب الدالة الأولى في مشتق الدالة الثانية زائد ضرب الدالة الثانية في مشتق الدالة الأولى.
\sqrt[3]{y}\times \frac{3}{5}y^{\frac{3}{5}-1}+y^{\frac{3}{5}}\times \frac{1}{3}y^{\frac{1}{3}-1}
مشتقة متعددة الحدود هي مجموع مشتقات حدودها. ومشتقة الحد الثابت هي 0. ومشتقة ax^{n} هي nax^{n-1}.
\sqrt[3]{y}\times \frac{3}{5}y^{-\frac{2}{5}}+y^{\frac{3}{5}}\times \frac{1}{3}y^{-\frac{2}{3}}
تبسيط.
\frac{3}{5}y^{\frac{1}{3}-\frac{2}{5}}+\frac{1}{3}y^{\frac{3}{5}-\frac{2}{3}}
لضرب أسس نفس الأساس، اجمع الأسس الخاصة بها.
\frac{3}{5}y^{-\frac{1}{15}}+\frac{1}{3}y^{-\frac{1}{15}}
تبسيط.
y^{\frac{14}{15}}
لضرب الأسس الخاصة بنفس الأساس، أضف القيم الخاصة بها. اجمع \frac{1}{3} مع \frac{3}{5} للحصول على \frac{14}{15}.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}