حل مسائل x
x = \frac{\sqrt{5} + 1}{2} \approx 1.618033989
x=\frac{1-\sqrt{5}}{2}\approx -0.618033989
رسم بياني
مشاركة
تم النسخ للحافظة
x-\frac{x+1}{x}=0
اطرح \frac{x+1}{x} من الطرفين.
\frac{xx}{x}-\frac{x+1}{x}=0
لإضافة تعبيرات أو طرحها، قم بمضاعفتها لجعل المقامات متساوية. اضرب x في \frac{x}{x}.
\frac{xx-\left(x+1\right)}{x}=0
بما أن لكل من \frac{xx}{x} و\frac{x+1}{x} المقام نفسه، يمكنك طرحهما عن طريق طرح قيمة البسط الخاصة بهما.
\frac{x^{2}-x-1}{x}=0
تنفيذ عمليات الضرب في xx-\left(x+1\right).
x^{2}-x-1=0
لا يمكن أن يكون المتغير x مساوياً لـ 0 لأن القسمة على صفر غير محددة. اضرب طرفي المعادلة في x.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)}}{2}
هذه المعادلة بالصيغة العامة: ax^{2}+bx+c=0. عوّض عن a بالقيمة 1 وعن b بالقيمة -1 وعن c بالقيمة -1 في الصيغة التربيعية، \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+4}}{2}
اضرب -4 في -1.
x=\frac{-\left(-1\right)±\sqrt{5}}{2}
اجمع 1 مع 4.
x=\frac{1±\sqrt{5}}{2}
مقابل -1 هو 1.
x=\frac{\sqrt{5}+1}{2}
حل المعادلة x=\frac{1±\sqrt{5}}{2} الآن عندما يكون ± موجباً. اجمع 1 مع \sqrt{5}.
x=\frac{1-\sqrt{5}}{2}
حل المعادلة x=\frac{1±\sqrt{5}}{2} الآن عندما يكون ± سالباً. اطرح \sqrt{5} من 1.
x=\frac{\sqrt{5}+1}{2} x=\frac{1-\sqrt{5}}{2}
تم حل المعادلة الآن.
x-\frac{x+1}{x}=0
اطرح \frac{x+1}{x} من الطرفين.
\frac{xx}{x}-\frac{x+1}{x}=0
لإضافة تعبيرات أو طرحها، قم بمضاعفتها لجعل المقامات متساوية. اضرب x في \frac{x}{x}.
\frac{xx-\left(x+1\right)}{x}=0
بما أن لكل من \frac{xx}{x} و\frac{x+1}{x} المقام نفسه، يمكنك طرحهما عن طريق طرح قيمة البسط الخاصة بهما.
\frac{x^{2}-x-1}{x}=0
تنفيذ عمليات الضرب في xx-\left(x+1\right).
x^{2}-x-1=0
لا يمكن أن يكون المتغير x مساوياً لـ 0 لأن القسمة على صفر غير محددة. اضرب طرفي المعادلة في x.
x^{2}-x=1
إضافة 1 لكلا الجانبين. حاصل جمع أي عدد مع صفر يكون العدد نفسه.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=1+\left(-\frac{1}{2}\right)^{2}
اقسم -1، معامل الحد x، على 2 لتحصل على -\frac{1}{2}، ثم اجمع مربع -\frac{1}{2} مع طرفي المعادلة. تجعل هذه الخطوة الطرف الأيسر من المعادلة مربعاً تاماً.
x^{2}-x+\frac{1}{4}=1+\frac{1}{4}
تربيع -\frac{1}{2} من خلال تربيع كل من البسط والمقام في الكسر.
x^{2}-x+\frac{1}{4}=\frac{5}{4}
اجمع 1 مع \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4}
عامل x^{2}-x+\frac{1}{4}. بشكل عام، عندما تكون x^{2}+bx+c مربعا مثاليا، يمكن تحليلها دائما ك "\left(x+\frac{b}{2}\right)^{2}".
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
استخدم الجذر التربيعي لطرفي المعادلة.
x-\frac{1}{2}=\frac{\sqrt{5}}{2} x-\frac{1}{2}=-\frac{\sqrt{5}}{2}
تبسيط.
x=\frac{\sqrt{5}+1}{2} x=\frac{1-\sqrt{5}}{2}
أضف \frac{1}{2} إلى طرفي المعادلة.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}