حل مسائل K
\left\{\begin{matrix}K=\frac{x\left(xy-x+y^{2}\right)}{x^{3}+y^{3}}\text{, }&x\neq -y\\K\in \mathrm{R}\text{, }&x=0\text{ and }y=0\end{matrix}\right.
مشاركة
تم النسخ للحافظة
\left(x^{2}+xy\right)y-x^{2}=K\left(x^{3}+y^{3}\right)
استخدم خاصية التوزيع لضرب x في x+y.
x^{2}y+xy^{2}-x^{2}=K\left(x^{3}+y^{3}\right)
استخدم خاصية التوزيع لضرب x^{2}+xy في y.
x^{2}y+xy^{2}-x^{2}=Kx^{3}+Ky^{3}
استخدم خاصية التوزيع لضرب K في x^{3}+y^{3}.
Kx^{3}+Ky^{3}=x^{2}y+xy^{2}-x^{2}
قم بتبديل الطرفين بحيث تكون كل الحدود المتغيرة على اليسار.
\left(x^{3}+y^{3}\right)K=x^{2}y+xy^{2}-x^{2}
اجمع كل الحدود التي تحتوي على K.
\left(x^{3}+y^{3}\right)K=yx^{2}+xy^{2}-x^{2}
المعادلة بالصيغة العامة.
\frac{\left(x^{3}+y^{3}\right)K}{x^{3}+y^{3}}=\frac{x\left(xy-x+y^{2}\right)}{x^{3}+y^{3}}
قسمة طرفي المعادلة على x^{3}+y^{3}.
K=\frac{x\left(xy-x+y^{2}\right)}{x^{3}+y^{3}}
القسمة على x^{3}+y^{3} تؤدي إلى التراجع عن الضرب في x^{3}+y^{3}.
K=\frac{x\left(xy-x+y^{2}\right)}{\left(x+y\right)\left(x^{2}-xy+y^{2}\right)}
اقسم x\left(-x+y^{2}+yx\right) على x^{3}+y^{3}.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}