تحليل العوامل
\left(x-2\right)\left(x-1\right)\left(x+4\right)\left(x+5\right)
تقييم
\left(x-2\right)\left(x-1\right)\left(x+4\right)\left(x+5\right)
رسم بياني
مشاركة
تم النسخ للحافظة
\left(x+5\right)\left(x^{3}+x^{2}-10x+8\right)
بواسطة نسبي Root نظرية ، فان كافة جذور نسبي الخاصة بمتعدد الحدود موجودة في النموذج \frac{p}{q} ، حيث p يقسم ال40 الثابت وq المعامل الرائدة 1. أحد الجذور هو -5 . يمكنك تحليل العنصر متعدد الحدود عن طريق قسمته على x+5.
\left(x+4\right)\left(x^{2}-3x+2\right)
ضع في الحسبان x^{3}+x^{2}-10x+8. بواسطة نسبي Root نظرية ، فان كافة جذور نسبي الخاصة بمتعدد الحدود موجودة في النموذج \frac{p}{q} ، حيث p يقسم ال8 الثابت وq المعامل الرائدة 1. أحد الجذور هو -4 . يمكنك تحليل العنصر متعدد الحدود عن طريق قسمته على x+4.
a+b=-3 ab=1\times 2=2
ضع في الحسبان x^{2}-3x+2. حلل عوامل التعبير بالتجميع. يجب أولاً إعادة كتابة التعبير كالتالي x^{2}+ax+bx+2. للعثور علي a وb ، قم باعداد نظام ليتم حله.
a=-2 b=-1
بما ان ab ايجابيه ، فa وb لها نفس العلامة. بما أن a+b سالب، فسيكون كل من a وb سالباً. مثل هذا الزوج الوحيد هو حل النظام.
\left(x^{2}-2x\right)+\left(-x+2\right)
إعادة كتابة x^{2}-3x+2 ك \left(x^{2}-2x\right)+\left(-x+2\right).
x\left(x-2\right)-\left(x-2\right)
قم بتحليل الx في أول و-1 في المجموعة الثانية.
\left(x-2\right)\left(x-1\right)
تحليل المصطلحات الشائعة x-2 باستخدام الخاصية توزيع.
\left(x-2\right)\left(x-1\right)\left(x+4\right)\left(x+5\right)
إعادة كتابة التعبير الكامل ذي العوامل المحددة.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}