حل مسائل x
x = \frac{\sqrt{89} - 3}{2} \approx 3.216990566
x=\frac{-\sqrt{89}-3}{2}\approx -6.216990566
رسم بياني
مشاركة
تم النسخ للحافظة
x^{2}+7x-4x=20
اطرح 4x من الطرفين.
x^{2}+3x=20
اجمع 7x مع -4x لتحصل على 3x.
x^{2}+3x-20=0
اطرح 20 من الطرفين.
x=\frac{-3±\sqrt{3^{2}-4\left(-20\right)}}{2}
هذه المعادلة بالصيغة العامة: ax^{2}+bx+c=0. عوّض عن a بالقيمة 1 وعن b بالقيمة 3 وعن c بالقيمة -20 في الصيغة التربيعية، \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-20\right)}}{2}
مربع 3.
x=\frac{-3±\sqrt{9+80}}{2}
اضرب -4 في -20.
x=\frac{-3±\sqrt{89}}{2}
اجمع 9 مع 80.
x=\frac{\sqrt{89}-3}{2}
حل المعادلة x=\frac{-3±\sqrt{89}}{2} الآن عندما يكون ± موجباً. اجمع -3 مع \sqrt{89}.
x=\frac{-\sqrt{89}-3}{2}
حل المعادلة x=\frac{-3±\sqrt{89}}{2} الآن عندما يكون ± سالباً. اطرح \sqrt{89} من -3.
x=\frac{\sqrt{89}-3}{2} x=\frac{-\sqrt{89}-3}{2}
تم حل المعادلة الآن.
x^{2}+7x-4x=20
اطرح 4x من الطرفين.
x^{2}+3x=20
اجمع 7x مع -4x لتحصل على 3x.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=20+\left(\frac{3}{2}\right)^{2}
اقسم 3، معامل الحد x، على 2 لتحصل على \frac{3}{2}، ثم اجمع مربع \frac{3}{2} مع طرفي المعادلة. تجعل هذه الخطوة الطرف الأيسر من المعادلة مربعاً تاماً.
x^{2}+3x+\frac{9}{4}=20+\frac{9}{4}
تربيع \frac{3}{2} من خلال تربيع كل من البسط والمقام في الكسر.
x^{2}+3x+\frac{9}{4}=\frac{89}{4}
اجمع 20 مع \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{89}{4}
عامل x^{2}+3x+\frac{9}{4}. بشكل عام، عندما تكون x^{2}+bx+c مربعا مثاليا، يمكن تحليلها دائما ك "\left(x+\frac{b}{2}\right)^{2}".
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{89}{4}}
استخدم الجذر التربيعي لطرفي المعادلة.
x+\frac{3}{2}=\frac{\sqrt{89}}{2} x+\frac{3}{2}=-\frac{\sqrt{89}}{2}
تبسيط.
x=\frac{\sqrt{89}-3}{2} x=\frac{-\sqrt{89}-3}{2}
اطرح \frac{3}{2} من طرفي المعادلة.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}