تجاوز إلى المحتوى الرئيسي
تحليل العوامل
Tick mark Image
تقييم
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

x^{2}+20x-15=0
يمكن تحديد عوامل متعددة الحدود التربيعية باستخدام التحويل ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)، التي يكون بها x_{1} وx_{2} حلولاً للمعادلة التربيعية ax^{2}+bx+c=0.
x=\frac{-20±\sqrt{20^{2}-4\left(-15\right)}}{2}
يمكن حل كل المعادلات بالصيغة ax^{2}+bx+c=0 باستخدام الصيغة التربيعية: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. وتقدم الصيغة التربيعية حلين، أحدهما عندما يكون ± جمعاً والآخر عندما يكون طرحاً.
x=\frac{-20±\sqrt{400-4\left(-15\right)}}{2}
مربع 20.
x=\frac{-20±\sqrt{400+60}}{2}
اضرب -4 في -15.
x=\frac{-20±\sqrt{460}}{2}
اجمع 400 مع 60.
x=\frac{-20±2\sqrt{115}}{2}
استخدم الجذر التربيعي للعدد 460.
x=\frac{2\sqrt{115}-20}{2}
حل المعادلة x=\frac{-20±2\sqrt{115}}{2} الآن عندما يكون ± موجباً. اجمع -20 مع 2\sqrt{115}.
x=\sqrt{115}-10
اقسم -20+2\sqrt{115} على 2.
x=\frac{-2\sqrt{115}-20}{2}
حل المعادلة x=\frac{-20±2\sqrt{115}}{2} الآن عندما يكون ± سالباً. اطرح 2\sqrt{115} من -20.
x=-\sqrt{115}-10
اقسم -20-2\sqrt{115} على 2.
x^{2}+20x-15=\left(x-\left(\sqrt{115}-10\right)\right)\left(x-\left(-\sqrt{115}-10\right)\right)
حلل التعبير الأصلي إلى عوامل باستخدام ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). عوّض -10+\sqrt{115} بـ x_{1} و-10-\sqrt{115} بـ x_{2}.