تجاوز إلى المحتوى الرئيسي
حل مسائل x، y
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

x+y=3,x-y=4
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
x+y=3
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
x=-y+3
اطرح y من طرفي المعادلة.
-y+3-y=4
عوّض عن x بالقيمة -y+3 في المعادلة الأخرى، x-y=4.
-2y+3=4
اجمع -y مع -y.
-2y=1
اطرح 3 من طرفي المعادلة.
y=-\frac{1}{2}
قسمة طرفي المعادلة على -2.
x=-\left(-\frac{1}{2}\right)+3
عوّض عن y بالقيمة -\frac{1}{2} في x=-y+3. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=\frac{1}{2}+3
اضرب -1 في -\frac{1}{2}.
x=\frac{7}{2}
اجمع 3 مع \frac{1}{2}.
x=\frac{7}{2},y=-\frac{1}{2}
تم إصلاح النظام الآن.
x+y=3,x-y=4
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}1&1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-1}&-\frac{1}{-1-1}\\-\frac{1}{-1-1}&\frac{1}{-1-1}\end{matrix}\right)\left(\begin{matrix}3\\4\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3\\4\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 3+\frac{1}{2}\times 4\\\frac{1}{2}\times 3-\frac{1}{2}\times 4\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2}\\-\frac{1}{2}\end{matrix}\right)
إجراء الحساب.
x=\frac{7}{2},y=-\frac{1}{2}
استخرج عنصري المصفوفة x وy.
x+y=3,x-y=4
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
x-x+y+y=3-4
اطرح x-y=4 من x+y=3 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
y+y=3-4
اجمع x مع -x. حذف الحدين x و-x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
2y=3-4
اجمع y مع y.
2y=-1
اجمع 3 مع -4.
y=-\frac{1}{2}
قسمة طرفي المعادلة على 2.
x-\left(-\frac{1}{2}\right)=4
عوّض عن y بالقيمة -\frac{1}{2} في x-y=4. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x+\frac{1}{2}=4
اضرب -1 في -\frac{1}{2}.
x=\frac{7}{2}
اطرح \frac{1}{2} من طرفي المعادلة.
x=\frac{7}{2},y=-\frac{1}{2}
تم إصلاح النظام الآن.