تجاوز إلى المحتوى الرئيسي
تحليل العوامل
Tick mark Image
تقييم
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

-x^{2}+2x+3
أعد ترتيب عامل متعدد الحدود ليكون بشكل قياسي. ضع الشروط بالترتيب من الأس الأكبر إلى الأصغر.
a+b=2 ab=-3=-3
حلل عوامل التعبير بالتجميع. يجب أولاً إعادة كتابة التعبير كالتالي -x^{2}+ax+bx+3. للعثور علي a وb ، قم باعداد نظام ليتم حله.
a=3 b=-1
بما ان ab سالبه ، فان الa وb لديها العلامات المقابلة. بما أن a+b موجب، فهذا يعني أن للرقم الموجب قيمة مطلقة أكبر من الرقم السالب. مثل هذا الزوج الوحيد هو حل النظام.
\left(-x^{2}+3x\right)+\left(-x+3\right)
إعادة كتابة -x^{2}+2x+3 ك \left(-x^{2}+3x\right)+\left(-x+3\right).
-x\left(x-3\right)-\left(x-3\right)
قم بتحليل ال-x في أول و-1 في المجموعة الثانية.
\left(x-3\right)\left(-x-1\right)
تحليل المصطلحات الشائعة x-3 باستخدام الخاصية توزيع.
-x^{2}+2x+3=0
يمكن تحديد عوامل متعددة الحدود التربيعية باستخدام التحويل ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)، التي يكون بها x_{1} وx_{2} حلولاً للمعادلة التربيعية ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
يمكن حل كل المعادلات بالصيغة ax^{2}+bx+c=0 باستخدام الصيغة التربيعية: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. وتقدم الصيغة التربيعية حلين، أحدهما عندما يكون ± جمعاً والآخر عندما يكون طرحاً.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
مربع 2.
x=\frac{-2±\sqrt{4+4\times 3}}{2\left(-1\right)}
اضرب -4 في -1.
x=\frac{-2±\sqrt{4+12}}{2\left(-1\right)}
اضرب 4 في 3.
x=\frac{-2±\sqrt{16}}{2\left(-1\right)}
اجمع 4 مع 12.
x=\frac{-2±4}{2\left(-1\right)}
استخدم الجذر التربيعي للعدد 16.
x=\frac{-2±4}{-2}
اضرب 2 في -1.
x=\frac{2}{-2}
حل المعادلة x=\frac{-2±4}{-2} الآن عندما يكون ± موجباً. اجمع -2 مع 4.
x=-1
اقسم 2 على -2.
x=-\frac{6}{-2}
حل المعادلة x=\frac{-2±4}{-2} الآن عندما يكون ± سالباً. اطرح 4 من -2.
x=3
اقسم -6 على -2.
-x^{2}+2x+3=-\left(x-\left(-1\right)\right)\left(x-3\right)
حلل التعبير الأصلي إلى عوامل باستخدام ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). عوّض -1 بـ x_{1} و3 بـ x_{2}.
-x^{2}+2x+3=-\left(x+1\right)\left(x-3\right)
بسّط كل تعبيرات النموذج p-\left(-q\right) إلى p+q.