f ( x ) = \tan ( \frac { \pi } { 2 } ( 44,7 - 32,5 ) ) + 65
حل مسائل f
f=\frac{5^{0,75}\left(\sqrt{10\left(\sqrt{5}-1\right)}-\sqrt{2\left(\sqrt{5}-1\right)}+260\sqrt[4]{5}\right)}{20x}
x\neq 0
حل مسائل x
x=\frac{5^{0,75}\left(\sqrt{10\left(\sqrt{5}-1\right)}-\sqrt{2\left(\sqrt{5}-1\right)}+260\sqrt[4]{5}\right)}{20f}
f\neq 0
رسم بياني
اختبار
Trigonometry
5 من المسائل المشابهة لـ :
f ( x ) = \tan ( \frac { \pi } { 2 } ( 44,7 - 32,5 ) ) + 65
مشاركة
تم النسخ للحافظة
fx=\tan(\frac{\pi }{2}\times 12,2)+65
اطرح 32,5 من 44,7 لتحصل على 12,2.
xf=\tan(\frac{61\pi }{10})+65
المعادلة بالصيغة العامة.
\frac{xf}{x}=\frac{\frac{\sqrt[4]{5}\sqrt{2\sqrt{5}-2}}{4}-\frac{\sqrt{2\sqrt{5}-2}}{4\sqrt[4]{5}}+65}{x}
قسمة طرفي المعادلة على x.
f=\frac{\frac{\sqrt[4]{5}\sqrt{2\sqrt{5}-2}}{4}-\frac{\sqrt{2\sqrt{5}-2}}{4\sqrt[4]{5}}+65}{x}
القسمة على x تؤدي إلى التراجع عن الضرب في x.
f=\frac{\sqrt{10\sqrt{5}-10}-\sqrt{2\sqrt{5}-2}+260\sqrt[4]{5}}{4\sqrt[4]{5}x}
اقسم 65-\frac{\sqrt{2\sqrt{5}-2}}{4\sqrt[4]{5}}+\frac{\sqrt[4]{5}\sqrt{2\sqrt{5}-2}}{4} على x.
fx=\tan(\frac{\pi }{2}\times 12,2)+65
اطرح 32,5 من 44,7 لتحصل على 12,2.
fx=\tan(\frac{61\pi }{10})+65
المعادلة بالصيغة العامة.
\frac{fx}{f}=\frac{\frac{\sqrt[4]{5}\sqrt{2\sqrt{5}-2}}{4}-\frac{\sqrt{2\sqrt{5}-2}}{4\sqrt[4]{5}}+65}{f}
قسمة طرفي المعادلة على f.
x=\frac{\frac{\sqrt[4]{5}\sqrt{2\sqrt{5}-2}}{4}-\frac{\sqrt{2\sqrt{5}-2}}{4\sqrt[4]{5}}+65}{f}
القسمة على f تؤدي إلى التراجع عن الضرب في f.
x=\frac{\sqrt{10\sqrt{5}-10}-\sqrt{2\sqrt{5}-2}+260\sqrt[4]{5}}{4\sqrt[4]{5}f}
اقسم 65-\frac{\sqrt{2\sqrt{5}-2}}{4\sqrt[4]{5}}+\frac{\sqrt[4]{5}\sqrt{2\sqrt{5}-2}}{4} على f.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}