حل مسائل f
f=-\frac{5x}{x-8}
x\neq 0\text{ and }x\neq 8
حل مسائل x
x=\frac{8f}{f+5}
f\neq -5\text{ and }f\neq 0
رسم بياني
مشاركة
تم النسخ للحافظة
5f^{-1}x=-x+8
اضرب طرفي المعادلة في 5.
5\times \frac{1}{f}x=8-x
أعد ترتيب الحدود.
5\times 1x=f\times 8-xf
لا يمكن أن يكون المتغير f مساوياً لـ 0 لأن القسمة على صفر غير محددة. اضرب طرفي المعادلة في f.
5x=f\times 8-xf
اضرب 5 في 1 لتحصل على 5.
f\times 8-xf=5x
قم بتبديل الطرفين بحيث تكون كل الحدود المتغيرة على اليسار.
\left(8-x\right)f=5x
اجمع كل الحدود التي تحتوي على f.
\frac{\left(8-x\right)f}{8-x}=\frac{5x}{8-x}
قسمة طرفي المعادلة على 8-x.
f=\frac{5x}{8-x}
القسمة على 8-x تؤدي إلى التراجع عن الضرب في 8-x.
f=\frac{5x}{8-x}\text{, }f\neq 0
لا يمكن أن يكون المتغير f مساوياً لـ 0.
5f^{-1}x=-x+8
اضرب طرفي المعادلة في 5.
5f^{-1}x+x=8
إضافة x لكلا الجانبين.
x+5\times \frac{1}{f}x=8
أعد ترتيب الحدود.
fx+5\times 1x=8f
اضرب طرفي المعادلة في f.
fx+5x=8f
اضرب 5 في 1 لتحصل على 5.
\left(f+5\right)x=8f
اجمع كل الحدود التي تحتوي على x.
\frac{\left(f+5\right)x}{f+5}=\frac{8f}{f+5}
قسمة طرفي المعادلة على 5+f.
x=\frac{8f}{f+5}
القسمة على 5+f تؤدي إلى التراجع عن الضرب في 5+f.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}