حل مسائل N
\left\{\begin{matrix}N=\frac{k}{9}+\frac{V}{\pi k^{2}}\text{, }&k\neq 0\\N\in \mathrm{R}\text{, }&V=0\text{ and }k=0\end{matrix}\right.
حل مسائل V
V=\frac{\pi \left(9N-k\right)k^{2}}{9}
مشاركة
تم النسخ للحافظة
V=\pi k^{2}N-\frac{1}{9}\pi k^{3}
استخدم خاصية التوزيع لضرب \frac{1}{9}\pi k^{2} في 9N-k.
\pi k^{2}N-\frac{1}{9}\pi k^{3}=V
قم بتبديل الطرفين بحيث تكون كل الحدود المتغيرة على اليسار.
\pi k^{2}N=V+\frac{1}{9}\pi k^{3}
إضافة \frac{1}{9}\pi k^{3} لكلا الجانبين.
\pi k^{2}N=\frac{\pi k^{3}}{9}+V
المعادلة بالصيغة العامة.
\frac{\pi k^{2}N}{\pi k^{2}}=\frac{\frac{\pi k^{3}}{9}+V}{\pi k^{2}}
قسمة طرفي المعادلة على \pi k^{2}.
N=\frac{\frac{\pi k^{3}}{9}+V}{\pi k^{2}}
القسمة على \pi k^{2} تؤدي إلى التراجع عن الضرب في \pi k^{2}.
N=\frac{k}{9}+\frac{V}{\pi k^{2}}
اقسم V+\frac{\pi k^{3}}{9} على \pi k^{2}.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}