حل مسائل I
\left\{\begin{matrix}I=-\frac{5t-D-30}{5st^{2}}\text{, }&s\neq 0\text{ and }t\neq 0\\I\in \mathrm{R}\text{, }&\left(D=-30\text{ and }t=0\right)\text{ or }\left(D=5t-30\text{ and }s=0\right)\end{matrix}\right.
حل مسائل D
D=5\left(Ist^{2}+t-6\right)
مشاركة
تم النسخ للحافظة
-30+5t+5t^{2}sI=D
قم بتبديل الطرفين بحيث تكون كل الحدود المتغيرة على اليسار.
5t+5t^{2}sI=D+30
إضافة 30 لكلا الجانبين.
5t^{2}sI=D+30-5t
اطرح 5t من الطرفين.
5st^{2}I=30+D-5t
المعادلة بالصيغة العامة.
\frac{5st^{2}I}{5st^{2}}=\frac{30+D-5t}{5st^{2}}
قسمة طرفي المعادلة على 5t^{2}s.
I=\frac{30+D-5t}{5st^{2}}
القسمة على 5t^{2}s تؤدي إلى التراجع عن الضرب في 5t^{2}s.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}