تجاوز إلى المحتوى الرئيسي
حل مسائل x (complex solution)
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

7x^{2}+2x+1=0
يمكن حل كل المعادلات بالصيغة ax^{2}+bx+c=0 باستخدام الصيغة التربيعية: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. وتقدم الصيغة التربيعية حلين، أحدهما عندما يكون ± جمعاً والآخر عندما يكون طرحاً.
x=\frac{-2±\sqrt{2^{2}-4\times 7}}{2\times 7}
هذه المعادلة بالصيغة العامة: ax^{2}+bx+c=0. عوّض عن a بالقيمة 7 وعن b بالقيمة 2 وعن c بالقيمة 1 في الصيغة التربيعية، \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 7}}{2\times 7}
مربع 2.
x=\frac{-2±\sqrt{4-28}}{2\times 7}
اضرب -4 في 7.
x=\frac{-2±\sqrt{-24}}{2\times 7}
اجمع 4 مع -28.
x=\frac{-2±2\sqrt{6}i}{2\times 7}
استخدم الجذر التربيعي للعدد -24.
x=\frac{-2±2\sqrt{6}i}{14}
اضرب 2 في 7.
x=\frac{-2+2\sqrt{6}i}{14}
حل المعادلة x=\frac{-2±2\sqrt{6}i}{14} الآن عندما يكون ± موجباً. اجمع -2 مع 2i\sqrt{6}.
x=\frac{-1+\sqrt{6}i}{7}
اقسم -2+2i\sqrt{6} على 14.
x=\frac{-2\sqrt{6}i-2}{14}
حل المعادلة x=\frac{-2±2\sqrt{6}i}{14} الآن عندما يكون ± سالباً. اطرح 2i\sqrt{6} من -2.
x=\frac{-\sqrt{6}i-1}{7}
اقسم -2-2i\sqrt{6} على 14.
x=\frac{-1+\sqrt{6}i}{7} x=\frac{-\sqrt{6}i-1}{7}
تم حل المعادلة الآن.
7x^{2}+2x+1=0
يمكن حل المعادلات من الدرجة الثانية مثل هذه المعادلة بإكمال المربع. لإكمال المربع، يجب أن تكون المعادلة بالصيغة x^{2}+bx=c.
7x^{2}+2x+1-1=-1
اطرح 1 من طرفي المعادلة.
7x^{2}+2x=-1
ناتج طرح 1 من نفسه يساوي 0.
\frac{7x^{2}+2x}{7}=-\frac{1}{7}
قسمة طرفي المعادلة على 7.
x^{2}+\frac{2}{7}x=-\frac{1}{7}
القسمة على 7 تؤدي إلى التراجع عن الضرب في 7.
x^{2}+\frac{2}{7}x+\left(\frac{1}{7}\right)^{2}=-\frac{1}{7}+\left(\frac{1}{7}\right)^{2}
اقسم \frac{2}{7}، معامل الحد x، على 2 لتحصل على \frac{1}{7}، ثم اجمع مربع \frac{1}{7} مع طرفي المعادلة. تجعل هذه الخطوة الطرف الأيسر من المعادلة مربعاً تاماً.
x^{2}+\frac{2}{7}x+\frac{1}{49}=-\frac{1}{7}+\frac{1}{49}
تربيع \frac{1}{7} من خلال تربيع كل من البسط والمقام في الكسر.
x^{2}+\frac{2}{7}x+\frac{1}{49}=-\frac{6}{49}
اجمع -\frac{1}{7} مع \frac{1}{49} من خلال إيجاد مقام مشترك وإضافة البسط. بعد ذلك، اختزل الكسر إلى أبسط قيمة إذا كان ذلك ممكناً.
\left(x+\frac{1}{7}\right)^{2}=-\frac{6}{49}
عامل x^{2}+\frac{2}{7}x+\frac{1}{49}. بشكل عام، عندما تكون x^{2}+bx+c مربعا مثاليا، يمكن تحليلها دائما ك "\left(x+\frac{b}{2}\right)^{2}".
\sqrt{\left(x+\frac{1}{7}\right)^{2}}=\sqrt{-\frac{6}{49}}
استخدم الجذر التربيعي لطرفي المعادلة.
x+\frac{1}{7}=\frac{\sqrt{6}i}{7} x+\frac{1}{7}=-\frac{\sqrt{6}i}{7}
تبسيط.
x=\frac{-1+\sqrt{6}i}{7} x=\frac{-\sqrt{6}i-1}{7}
اطرح \frac{1}{7} من طرفي المعادلة.