حل مسائل x (complex solution)
x=\frac{-9\sqrt{3}i+9}{8}\approx 1.125-1.948557159i
x = -\frac{9}{4} = -2\frac{1}{4} = -2.25
x=\frac{9+9\sqrt{3}i}{8}\approx 1.125+1.948557159i
حل مسائل x
x = -\frac{9}{4} = -2\frac{1}{4} = -2.25
رسم بياني
مشاركة
تم النسخ للحافظة
±\frac{729}{64},±\frac{729}{32},±\frac{729}{16},±\frac{729}{8},±\frac{729}{4},±\frac{729}{2},±729,±\frac{243}{64},±\frac{243}{32},±\frac{243}{16},±\frac{243}{8},±\frac{243}{4},±\frac{243}{2},±243,±\frac{81}{64},±\frac{81}{32},±\frac{81}{16},±\frac{81}{8},±\frac{81}{4},±\frac{81}{2},±81,±\frac{27}{64},±\frac{27}{32},±\frac{27}{16},±\frac{27}{8},±\frac{27}{4},±\frac{27}{2},±27,±\frac{9}{64},±\frac{9}{32},±\frac{9}{16},±\frac{9}{8},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{64},±\frac{3}{32},±\frac{3}{16},±\frac{3}{8},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{64},±\frac{1}{32},±\frac{1}{16},±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
بواسطة نسبي Root نظرية ، فان كافة جذور نسبي الخاصة بمتعدد الحدود موجودة في النموذج \frac{p}{q} ، حيث p يقسم ال729 الثابت وq المعامل الرائدة 64. سرد جميع المرشحين \frac{p}{q}.
x=-\frac{9}{4}
يمكنك العثور على أحد هذه الجذور من خلال محاولة إدخال كل القيم الصحيحة بدءاً من القيمة المطلقة الصغرى. إذا لم يتم العثور على جذور صحيحة، فجرب استخدام الأعداد الكسرية.
16x^{2}-36x+81=0
بواسطة المعامل نظرية ، يعد الx-k عاملا لحدود الشكل لكل k جذر. اقسم 64x^{3}+729 على 4\left(x+\frac{9}{4}\right)=4x+9 لتحصل على 16x^{2}-36x+81. حل المعادلة التي يساويها الناتج 0.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 16\times 81}}{2\times 16}
يمكن حل كل معادلات النموذج ax^{2}+bx+c=0 باستخدام الصيغة التربيعية: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. استبدل 16 بـ a، و-36 بـ b و81 بـ c في الصيغة التربيعية.
x=\frac{36±\sqrt{-3888}}{32}
قم بإجراء العمليات الحسابية.
x=\frac{-9i\sqrt{3}+9}{8} x=\frac{9+9i\sqrt{3}}{8}
حل المعادلة 16x^{2}-36x+81=0 عندما تكون العلامة ± علامة جمع و± علامة طرح.
x=-\frac{9}{4} x=\frac{-9i\sqrt{3}+9}{8} x=\frac{9+9i\sqrt{3}}{8}
إدراج كافة الحلول التي تم العثور عليها.
±\frac{729}{64},±\frac{729}{32},±\frac{729}{16},±\frac{729}{8},±\frac{729}{4},±\frac{729}{2},±729,±\frac{243}{64},±\frac{243}{32},±\frac{243}{16},±\frac{243}{8},±\frac{243}{4},±\frac{243}{2},±243,±\frac{81}{64},±\frac{81}{32},±\frac{81}{16},±\frac{81}{8},±\frac{81}{4},±\frac{81}{2},±81,±\frac{27}{64},±\frac{27}{32},±\frac{27}{16},±\frac{27}{8},±\frac{27}{4},±\frac{27}{2},±27,±\frac{9}{64},±\frac{9}{32},±\frac{9}{16},±\frac{9}{8},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{64},±\frac{3}{32},±\frac{3}{16},±\frac{3}{8},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{64},±\frac{1}{32},±\frac{1}{16},±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
بواسطة نسبي Root نظرية ، فان كافة جذور نسبي الخاصة بمتعدد الحدود موجودة في النموذج \frac{p}{q} ، حيث p يقسم ال729 الثابت وq المعامل الرائدة 64. سرد جميع المرشحين \frac{p}{q}.
x=-\frac{9}{4}
يمكنك العثور على أحد هذه الجذور من خلال محاولة إدخال كل القيم الصحيحة بدءاً من القيمة المطلقة الصغرى. إذا لم يتم العثور على جذور صحيحة، فجرب استخدام الأعداد الكسرية.
16x^{2}-36x+81=0
بواسطة المعامل نظرية ، يعد الx-k عاملا لحدود الشكل لكل k جذر. اقسم 64x^{3}+729 على 4\left(x+\frac{9}{4}\right)=4x+9 لتحصل على 16x^{2}-36x+81. حل المعادلة التي يساويها الناتج 0.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 16\times 81}}{2\times 16}
يمكن حل كل معادلات النموذج ax^{2}+bx+c=0 باستخدام الصيغة التربيعية: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. استبدل 16 بـ a، و-36 بـ b و81 بـ c في الصيغة التربيعية.
x=\frac{36±\sqrt{-3888}}{32}
قم بإجراء العمليات الحسابية.
x\in \emptyset
نظراً لعدم تعريف الجذر التربيعي لرقم سالب في الحقل الحقيقي، لا توجد حلول.
x=-\frac{9}{4}
إدراج كافة الحلول التي تم العثور عليها.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}